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A B S T R A C T   

Background: This study explores how mild cognitive impairment (MCI) and Alzheimer’s disease (AD) develop 
over time. 
New method: this study involves a new application of latent curve models (LCM) to examine the development 
trajectory of a healthy, MCI, and AD groups on a series of clinical and neural measures. Multiple-group latent 
curve models were used to compare the parameters of the trajectories across groups. 
Results: LCM results showed that a linear functional form of growth was adequate for all the clinical and neural 
measures. Positive and significant differences in initial levels were seen across groups on all of the clinical and 
neural measures. In all groups, the following measures increased slightly, or considerably, over time: Clinical De
mentia Rating, Alzheimer’s disease Cognitive Assessment, and Montreal Assessment Test for Dementia. In contrast, a 
slight or a greatly decreasing trajectory was observed on the following measures: Fluorodeoxyglucose, Mini-Mental 
State Exam, Rey Auditory Verbal Learning Test as well as Hippocampus, Fusiform and Entorhinal Cortex volume 
measures. However, a constant mean trajectory was seen on Cognition Self Report Memory and languages scores. 
Comparision with existing methods: there are no prior studies that applied LCM on large AD datasets. 
Conclusions: cognitive decline occurs in the cognitively normal (CN), MCI, and AD groups but at different rates. 
Further, some important cognitive, neural, and clinical variables that (a) best differentiate between CN, MCI, and 
AD as well as (b) differentially change over time in MCI and AD, which may explain disease progression.   

1. Introduction 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI; Jack et al., 
2008) has collected longitudinal data from individuals aged 55–90 with 
normal cognition, mild cognitive impairment, and Alzheimer’s disease 
(AD) at 0, 6, 12, 24, and 36-month intervals. The goal of the ADNI project 
is to use biomarkers to assess the trajectory of AD to promote early 
detection and to identify effective interventions, preventative measures, 
and treatments. Understanding the trajectory and progression of neuro
degenerative diseases such as Alzheimer’s disease is important to provide 

early diagnosis and limit the effects of cognitive impairments associated 
with the AD (e.g., memory decline, learning difficulties, and reduced 
decision-making capacity). However, as cognitive decline is a normal 
aging process (Harada et al., 2013; Malpetti et al., 2019; Salthouse, 2011), 
it can be difficult to differentiate between normal cognitive decline, mild 
cognitive impairment, and AD (Pietrzak et al., 2015). Therefore, identi
fying differences in trajectories can aid our understanding of how bio
markers and neurocognitive assessments change over time for these three 
groups (i.e., cognitively normal, mild cognitive impairment, and AD). 

Cognitive decline is part of the normal aging process and is 
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characterized by a significant deterioration in cognitive tasks such as 
reasoning, spatial orientation, memory, and processing speed (Salthouse, 
2009, 2010). Findings suggest cognitive decline can begin in healthy 
people aged 20–30 (Salthouse, 2009). However, others have shown that 
cognitive decline before the age of 65 is often small (Cornelis et al., 2019). 
Further, age-related cognitive decline seems to be task-specific. For 
example, compared to younger controls, older people tend to show 
significantly poorer performance for visual memory (Cornelis et al., 
2019), episodic memory (Lundervold et al., 2014), decision making 
(Boyle et al., 2012) and processing speed tasks (Cornelis et al., 2019); but 
not for reasoning or prospective memory tasks (Cornelis et al., 2019). 
Mild-cognitive impairment is characterized as cognitive decline greater 
than what can be expected due to age and educational level but does not 
cause impairments is normal daily functioning (Gauthier et al., 2006; R. C. 
Petersen et al., 1999). However, some research has shown that 
mild-cognitive impairment does produce some dysfunction in the per
formance of daily activities, such as cleaning, shopping, driving, and fi
nances (e.g., Marshall et al., 2011). Alzheimer’s disease is defined as a 
neurodegenerative disease which progressively deteriorates cognitive 
functions (e.g., memory, learning, language, judgment, decision making, 
processing speed, and emotion regulation; Alzheimer Association, 2019) 
which produces marked impairments in daily functioning. 

Declines in cognitive performance can occur due to the normal aging 
process, mild cognitive impairment, or AD. As all three groups demonstrate 
a significant decline in cognitive abilities when compared to controls, it can 
be difficult to differentiate between the prognoses of people presenting with 
different types of cognitive impairment, especially during the early stages 
(Gross, Inouye, et al., 2012; McArdle et al., 2005; Pietrzak et al., 2015). 
Indeed, as AD develops slowly over time, symptoms may occur well-before a 
diagnosis is reached (Haaksma, Calderón-Larrañaga, Olde Rikkert, Melis, & 
Leoutsakos, 2018; Ji et al., 2003; Royall and Palmer, 2012). During the early 
stages of AD, cognitive decline might be subtle and indistinguishable from 
normal cognitive decline or mild cognitive impairment (Buckley et al., 
2015; Jacobs et al., 2012; MacAulay et al., 2018; Perrin et al., 2009). 
However, it is not necessarily the decline in cognitive impairment but the 
difference between the steepness (i.e., severity) and the longitudinal tra
jectory of the decline associated with normal aging, mild cognitive 
impairment, and Alzheimer’s Disease which might help differentiate these 
groups (Johnson et al., 2012; Mungas et al., 2010). 

Latent class modeling can be used to identify groups with different 
Alzheimer’s disease progression; for example, those with slow, moder
ate, and rapid progression (Haaksma et al., 2018). Then latent growth 
curve models can be applied to determine the trajectories of Alzheimer’s 
Disease for the different classes (Anstey et al., 2003; Garre-Olmo, 
López-Pousa, Vilalta-Franch, De Gracia Blanco, & Vilarrasa, 2010; 
Haaksma et al., 2018; Johnson et al., 2012; MacAulay et al., 2018; 
McArdle et al., 2005). For example, in a group already diagnosed with 
Alzheimer’s disease, baseline measures of neuropsychological assess
ments (e.g., the mini-mental state exam and the clinical dementia rating) 
can successfully predict the rate and progression of cognitive decline at 
multiple follow-ups (e.g., 12, 24, and 36 months; Haaksma et al., 2018). 
While a majority of people with Alzheimer’s disease are likely to expe
rience slow progression, a subset of those with poor neuropsychological 
assessment at baseline are more likely to experience a rapid progression 
(Haaksma et al., 2018). These studies reliably distinguish between 
different classes of Alzheimer’s disease. However, as their main focus is 
Alzheimer’s disease, the research does not aid our understanding or 
ability to distinguish between groups with age-related cognitive decline, 
mild cognitive impairment, and AD. As such, the predictive power to 
identify groups at risk of developing AD during the early stages of 
cognitive decline is inadequate. 

Johnson et al. (2012) utilized latent growth modeling to estimate the 
difference in the trajectories of cognitive changes in a group with mild 
cognitive impairment and healthy controls. Longitudinal neuropsycho
logical assessment data from the ADNI project was included in their 
analysis (i.e., at baseline, 6-, 12-, 18-, and 36-months). Their results 

showed that cognitive decline was noticeable for both healthy controls 
and a group with mild cognitive impairment. However, cognitive 
decline was more rapid for those with mild cognitive impairment. Spe
cifically, there was a steeper decline for measures of memory, processing 
speed, language, attention, and visuospatial tasks — healthy controls did 
not show a decline in any of these domains. The authors indicate that 
processing speed showed the largest effect and can better differentiate 
between healthy people and a group with mild cognitive impairment. 

The Johnson et al. (2012) results show that latent curve modeling 
can be used to identify the trajectories of cognitive decline between a 
group with mild cognitive decline and healthy controls. While outside of 
the scope of their study, the trajectory of cognitive decline associated 
with AD was not assessed. For that reason, it is difficult to generalize 
these findings to AD. As there is a high-risk of people with mild cognitive 
impairment progressing to AD (Gauthier et al., 2006; Hansson et al., 
2006; Michaud et al., 2017; Mitchell and Shiri-Feshki, 2009; Petersen, 
2009; Roberts et al., 2005), it is important to distinguish the trajectories 
for cognitively normal, mild cognitive impairment, and AD patients. 
Another drawback of these studies is their reliance on neuropsycho
logical assessments (e.g., Alzheimer’s Disease assessment scale, 
mini-mental state examination, and the clinical dementia rating) to 
predict the trajectory of Alzheimer’s. 

In addition to neuropsychological assessments, biomarkers such as 
Amyloid-β, total tau (t-tau), phosphorylated tau (p-tau), hippocampal 
volume, ventricular volume, fluorodeoxyglucose positron emission to
mography (PET), and genetic carriers (i.e., Apolipoprotein E4 gene or 
APOE) have improved our understanding of the progression of cognitive 
decline due to the normal aging process, mild-cognitive impairment, and 
AD (Deary et al., 2009; Dowling et al., 2015; Gross et al., 2012a, 2012b; 
Han et al., 2012; Pietrzak et al., 2015; Rabin et al., 2017; Thibeau et al., 
2017; Vemuri et al., 2019). Latent growth curve models have identified 
that high levels of Amyloid-β, the APOE gene, and tau are predictive of 
rapid memory decline in AD (Dowling et al., 2015; Pietrzak et al., 2015). 
Other findings have implicated lower levels of Amyloid-β, tau, and a loss 
of Hippocampal volume as predictors of cognitive decline during 
early-stages of an AD diagnosis (Dowling et al., 2015; Perrin et al., 2009; 
Shaw et al., 2009). Indeed, low levels of Amyloid-β are predictive of the 
progression from normal cognitive functioning to mild cognitive 
impairment; and from mild cognitive impairment to AD (Fagan et al., 
2007; Hansson et al., 2006; Li, 2007; Perrin et al., 2009). 

Malpetti et al. (2019) assessed the longitudinal progression of cogni
tive decline in a group with mild cognitive impairment (N = 14), probable 
AD (N = 12), and cognitively normal individuals (N = 26). The study 
aimed to identify if neuroimaging biomarkers (i.e., using PET and struc
tural Magnetic resonance imaging, MRI) such as tau pathology, neuro
inflammation, and brain atrophy are predictive of cognitive decline in AD. 
Further, they aimed to determine if PET or MRI imaging is a more robust 
assessment of cognitive decline. Latent growth curve modeling deter
mined that the AD group had a more rapid decline in cognitive perfor
mance over the three year period compared to mild-cognitive impairment, 
and cognitively normal controls. Their results also confirmed that lower 
baseline scores were predictive of a more rapid decline in cognitive per
formance (Haaksma et al., 2018). In terms of neurological biomarkers, 
tau, neuro-inflammation, and atrophy all predicted longitudinal cognitive 
decline. Further, structural MRI (i.e., atrophy) was more predictive of 
longitudinal cognitive decline compared to PET imaging (i.e., tau and 
neuroinflammation). The results also suggest that the trajectory (i.e., 
slope) of cognitive decline differed significantly between healthy controls, 
mild cognitive impairment, and AD. However, the authors do caution that 
their result should be replicated in a larger sample to confirm the effects of 
multiple predictors of cognitive decline. 

The literature has established that there is a decline in cognitive 
performance in AD patients and this might be predicted by baseline 
neuropsychological assessment and neurological biomarkers (Haaksma 
et al., 2018; Johnson et al., 2012). With latent growth curve modeling 
showing some differences in the trajectory of cognitive decline in groups 
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with slow, moderate, or rapid AD (Haaksma et al., 2018; Malpetti et al., 
2019). However, latent growth curve modeling has not been applied to 
assess the longitudinal changes within neurological biomarkers of AD 
for cognitively normal, mild cognitive impairment, or AD groups. Un
derstanding the trajectories associated with neuropsychological assess
ments and neurological biomarkers of AD could assist in the 
development of assessments for early detection, identify effective in
terventions, preventative measures, and treatments(Jack et al., 2008). 
Measuring changes using more objective neurological biomarkers of 
cognitive decline (i.e., Amyloid-β, tau, and Hippocampal volume) could 
also contribute to the earlier detection of AD; or to identify if the tra
jectory of people during the earlier stages of cognitive decline will 
predict if they are experiencing age-related cognitive decline, mild 
cognitive impairment, or the early-stages AD. The goals of the present 
study are to identify the development trajectories1 of three groups (i.e., 
cognitively normal, mild cognitive impairment, and AD) on the clinical 
and neural measures. Second, our goal is to also identify whether these 
three cognitively normal, mild cognitive impairment and AD groups 
differ significantly in their trajectories. 

2. Method 

2.1. ADNI dataset 

Data used in the preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni. 
loni.usc.edu). The ADNI was launched in 2003 as a public-private 
partnership, led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can be com
bined to measure the progression of mild cognitive impairment (MCI) 
and early Alzheimer’s disease (AD). 

The ADNI dataset includes 2132 participants: 512 controls, and 353 with 
early-MCI (EMCI), 621 with late-MCI (LMCI), and 279 with subjective 
memory complaints (SMC), and 367 CE patients. Data were collected over a 
3-year persion, at 0, 6, 12, 24, and 36 months. The ADNI dataset includes the 
following measures for all participants: APOE4 = Apolipoprotein E4 gene (it 
is either 0 or 1, which refers to having the gene polymorphism or not); FDG 
= Fluorodeoxyglucose (refers to Average FDG-PET of angular, temporal, and 
posterior cingulate); CDRSB = Clinical Dementia Rating Sum of Boxes (takes 
a value from 0 to 6, which higher values mean more dementia symptoms); 
ADAS11 = Alzheimer’s Disease Assessment Scale (11 item version,which 
measure degree of cognitive decline); MMSE = Mini-Mental State Exami
nation (30 questions to measure cognitive impairment); RAVimD = Rey 
Auditory Verbal Learning Test (Immediate word recall score, which meas
uers short term memory and rate of learning using list of words); MOCA =
The Montreal Cognitive Assessment (30 items to test cognitive impairment); 
EcPtMm = Everyday Cognition-Participant Self Report (8 memory items, 
which measures functional and cognitive factors related to daily living ac
tivities by the participant themselves); EcPtLg = Everyday Cognition- 
Participant Self Report (9 language items, which measures language pro
cesses in everyday livig by the participant themselves); EcSPM = Everyday 
Cognition- Participant Study Partner Report (8 Memory items, which mea
sures functional and cognitive factors related to daily living activities by the 
partner of the participant); EcSPLg = Everyday Cognition- Participant Study 
Partner Report (9 Language items, which measures language processes in 
everyday livig by the partner of the participant); Hipc = Hippocampus 
volume (measure of hippocampus volume as indicated by imaging studies); 
Entor = entorhinal cortex volume (measure of entorhinal cortex volume as 
indicated by imaging studies) ; Fusif = fusiform gyrus volume (measure of 
fusiform gyrus volume as indicated by imaging studies). 

2.2. Statistical analysis 

Latent curve model in the structural equation modeling framework 

also referred to as growth curve model, latent trajectory model, or 
random-effects modeling was used to estimate the development trajec
tories of the three groups of patients on the clinical and neural measures. 
Latent curve model analysis changes in a construct over time by 
explicitly modeling growth and group differences in growth over time. 

2.2.1. Latent curve models (LCM) specification 
LCM are used to analyze multiwave longitudinal data when population 

homogeneity is assumed for the estimated population parameters and global 
shape of the growth trajectories. Assuming a linear model for the repeated 
measures, for an individual i at time t (t = 1, 2, ..., T), the within-person 
longitudinal LGM with Time-varying Covariate (TVC) is represented as: 

yit = αi + βi. λt + εit 
where yit is the repeated measure outcome variable, λt is the time 

score, αi is the intercept growth factor, βi is the linear slope growth 
factor, and εit ~ N(0, θt) is the normally distributed residual for yit. 
Growth is represented by imposing constraints on the time scores (λt) 
reflecting the passage of time. LCM generally assumes that the growth 
factors and the time specific residuals are mutually independent and 
multivariate normal.The between person LCM model is specified as: 

αi = μα + ζαi
βi = μβ + ζβi 

where μα, μβ are the means of the growth factors; and ζαi and ζβi are 
the multivariate normal residuals of growth factors with a zero mean 
vector, Var(α) = Var(ζαi) = ψαy

αy, Var(β) = Var(ζβi) = ψβy
βy, and Cov(α,

β) = Cov(ζαi,ζβi) = ψαy
βy. 

Further development on latent trajectory analysis is presented in 
elsewhere (e.g., Diallo and Morin, 2015; Diallo et al., 2014; Diallo and 
Lu, 2016; Duncan and Duncan, 1994; McArdle, 1988; McArdle and 
Epstein, 1987; Meredith and Tisak, 1984, 1990; Muthén and Curran, 
1997; Willett and Sayer, 1994). 

2.2.2. LCM estimation 
The Maximum Likelihood Estimation (ML) method, the most used 

method to estimate parameters in Structural equation modeling (SEM), is 
also used for estimating LCM parameters as it provides many desirable 
statistical proprieties under multivariate normality assumption. The starting 
point of the ML estimation is the likelihood function (or the density function) 
of the data, viewed as a function of the unknown parameters. Maximizing 
the likelihood function determines the parameters that are most likely to 
produce the observed data. ML estimator minimizes the fitting function 

FML = tr
(
SΣ
⌢− 1)

+ ln| Σ
⌢
| − ln|S| − (p + q)

Where S is the to the (actual) covariance matrix based on the 
empirical data, Σ̂the implied covariance matrix produced by the speci
fied model, q is the number of independent variables in the model and p is 
the number of dependent variables in the model. 

Assuming large sample sizes, the ML estimates are asymptotically 
normally distributed with the asymptotic covariance matrix equal to the 
inverse of the Fisher information matrix, computed as the negative 
Hessian of the log-likelihood. The asymptotic standard errors of the ML 
estimates are then obtained as the square root of the diagonal element of 
the asymptotic covariance matrix. 

Furthermore, the null hypothesis (H0) that the population total 
covariance matrix is equal to the model implied covariance matrix can 
be evaluated using the likelihood ratio statistic, TML: 

TML = FML(θ̂) − FML(θ̂S)

where FML(θ̂) denotes the fitting function for the hypothesized model 
and FML(θ̂S) denotes the fitting function for the saturated model. 
Assuming that the null hypothesis holds, the likelihood ratio statistic 
TML asymptotically follows a central chi-square distribution with degree 
of freedom (df) equals to the difference in the number of parameters 
between the saturated model and the hypothesized model. It’s important 
to note that the test statistic TML follows a central chi-square distribution 
under various conditions including proper model specification, 
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multivariate normality at both levels, and sufficiently large sample sizes. 
Iterative numerical methods are often used to get the ML estimates. 

The ML function to be minimized is distributed as follows: 
(N-1)* FML ~ χ2 [(p + q)(p + q+1)-t], where t is the number of free 

parameters and N is the sample size. For a technical detail on this esti
mation process, we refer the reader to (Bollen and Curran, 2006). 

2.2.3. Multiple group analysis 
Multiple-group latent curve model (Bollen and Curran, 2006) also 

known as a multiple-sample latent curve model, was then employed to test 
whether the three groups of patients with AD, cognitively normal (CN) 
and MCI differ significantly in their trajectories. This analytical technique 
imposes a series of nested equality constraints on the parameters of the 
growth trajectories across the different groups. The multiple-group latent 
curve model was conducted in three steps. First, a latent curve model that 
best described the data was estimated in each group separately. Second, a 
joint analysis of all groups with the parameters of the trajectories 

estimated freely was carried out. Third, a joint analysis of all groups and 
tests of invariance was conducted through equality restrictions. 

2.2.4. Analytical steps 
A series of latent curve models were estimated to specify the optimal 

functional form of growth of the clinical and neural measures across 
groups. Different forms of growth including linear, quadratic and free
loading models were estimated and the fit of these models was 
compared. A linear function was found to be optimal for all the measures 
considered in this paper. Residuals were freely estimated across time 
and were allowed to correlate. Because we did not have hypotheses 
about the order in which parameters of the latent curve models should 
be tested, we followed the hierarchy suggested in Bollenand Curran 
(2006). We first tested whether the means of growth trajectories pa
rameters (i.e., intercept and linear slope) were equal (invariant) across 
groups. Then, growth trajectories variances (i.e, random intercepts and 
random linear slopes variances) invariance across groups was 

Table 1 
Goodness-of-fit indices for the Latent Growth Curve Analysis. Our results show that a linear functional form of growth provided the best fit to the data.  

Groups χ2 df p-value CFI TLI RMSEA (90 % CI) 

Fluorodeoxyglucose        
AD 13.59 9 0.14 0.99 0.99 0.05 (0.00− 0.09) 
CN 14.65 10 0.15 0.99 0.99 0.04 (0.00− 0.07) 
MCI 7.14 10 0.71 1.00 1.00 0.00 (0.00− 0.03) 
Clinical Dementia Rating Scale- Sum of Boxes 
AD 21.93 10 0.02 0.96 0.96 0.05 (0.02− 0.09) 
CN 47.79 10 0.00 0.93 0.93 0.06 (0.05− 0.09) 
MCI 26.56 10 0.00 0.99 0.99 0.04 (0.02− 0.06) 
Alzheimer’sDiseaseAssessmentScale 
AD 34.10 10 0.00 0.95 0.95 0.08 (0.05− 0.11) 
CN 38.54 10 0.00 0.95 0.95 0.06 (0.04− 0.08) 
MCI 24.63 10 0.01 0.99 0.99 0.04 (0.02− 0.06) 
Mini Mental State Exam 
AD 24.68 10 0.01 0.95 0.95 0.06 (0.03− 0.10) 
CN 24.06 10 0.01 0.94 0.94 0.04 (0.02− 0.06) 
MCI 39.83 10 0.00 0.98 0.98 0.05 (0.04− 0.07) 
Rey Auditory Verbal Learning Test 
AD 28.42 10 0.00 0.96 0.96 0.07 (0.04− 0.10) 
CN 18.87 10 0.04 0.99 0.99 0.03 (0.01− 0.07) 
MCI 17.99 10 0.06 1.00 1.00 0.03 (0.00− 0.05) 
Montreal Cognitive Assessment Test for Dementia 
AD 25.07 10 0.01 0.92 0.92 0.09 (0.09− 0.14) 
CN 16.23 12 0.18 0.99 0.99 0.03 (0.00− 0.05) 
MCI 20.89 10 0.02 0.99 0.99 0.04 (0.01− 0.07) 
Cognition Self Report (Memory) 
AD 5.62 11 0.90 1.00 1.00 0.00 (0.00− 0.04) 
CN 4.81 9 0.85 1.00 1.00 0.00 (0.00− 0.03) 
MCI 9.82 9 0.37 1.00 1.00 0.01 (0.00− 0.05) 
Cognition Self Report (Language) 
AD 5.76 11 0.89 1.00 1.04 0.00 (0.00− 0.04) 
CN 7.92 10 0.64 1.00 1.00 0.00 (0.00− 0.04) 
MCI 8.16 10 0.61 1.00 1.00 0.00 (0.00− 0.04) 
Cognition Partner Report (Memory) 
AD 9.56 11 0.57 1.00 1.00 0.00 (0.00− 0.07) 
CN 12.33 10 0.26 1.00 1.00 0.02 (0.00− 0.05) 
MCI 25.07 10 0.01 1.00 1.00 0.05 (0.03− 0.08) 
Cognition Partner Report (Language) 
AD 9.50 10 0.49 1.00 1.00 0.00 (0.00− 0.08) 
CN 17.24 10 0.07 0.98 0.98 0.04 (0.00− 0.06) 
MCI 25.45 10 0.00 0.99 0.99 0.05 (0.03− 0.08) 
Hippocampus        
AD 39.00 9 0.00 0.98 0.98 0.09 (0.07− 0.13) 
CN 38.87 10 0.00 0.99 0.99 0.07 (0.05− 0.10) 
MCI 25.17 10 0.01 1.00 1.00 0.01 (0.02− 0.06) 
Entorhinal cortex        
AD 12.47 10 0.26 1.00 1.00 0.03 (0.00− 0.07) 
CN 20.70 10 0.02 0.99 0.99 0.05 (0.02− 0.08) 
MCI 9.75 10 0.46 1.00 1.00 0.00 (0.00− 0.04) 
Fusiform        
AD 25.63 10 0.00 0.99 0.99 0.07 (0.04− 0.11) 
CN 8.71 10 0.56 1.00 1.00 0.00 (0.00− 0.04) 
MCI 30.79 10 0.00 1.00 1.00 0.05 (0.03− 0.07)  
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Table 2 
Multi-group Analysis Results. The results showed that among several models, the linear functional form of growth was optimal for the three groups and for all clinical 
and neural measures.   

χ2 df p-value CFI TLI RMSEA (90 % CI, RMSEA) Δχ2 df P difference 

Fluorodeoxyglucose           
Baseline Model: No Invariance 35.38 29 0.19 1.00 1.00 0.03 (0.00− 0.05)    
Intercept and Slope Mean Invariance 360.23 33 0.00 0.84 0.86 0.16 (0.14− 0.17) 324.85 4 < 0.0001 
Intercept Mean Invariance 270.89 31 0.00 0.88 0.89 0.14 (0.14− 0.17) 235.51 2 < 0.0001 
Slope Mean Invariance 47.44 31 0.03 1.00 1.00 0.04 (0.01− 0.06) 12.06 2 0.00 
Partial Slope Invariance: (NC = MCI) 39.04 30 0.03 1.00 1.00 0.03 (0.00− 0.05) 3.66 1 0.06 
Intercept Variance Invariance 77.45 33 0.00 1.00 1.00 0.05 (0.04− 0.07) 38.41 3 < 0.0001 
Slope Variance Invariance 89.86 33 0.00 0.99 0.99 0.06 (0.04− 0.07) 50.82 3 < 0.0001 
Clinical Dementia Rating Scale- Sum of Boxes           
Baseline Model: No Invariance 96.28 30 0.00 0.98 0.98 0.06 (0.04− 0.07)    
Intercept and Slope Mean Invariance 1576.27 34 0.00 0.42 0.49 0.25 (0.24− 0.26) 1479.99 4 < 0.0001 
Intercept Mean Invariance 1154.48 32 0.00 0.58 0.61 0.22 (0.21− 0.23) 1058.20 2 < 0.0001 
Slope Mean Invariance 124.53 32 0.00 0.97 0.97 0.06 (0.05− 0.08) 28.25 2 < 0.0001 
Partial Slope Invariance: (NC = MCI) 105.42 31 0.00 0.97 0.97 0.06 (0.05− 0.07) 9.14 1 0.00 
Intercept Variance Invariance 1055.98 32 0.00 0.62 0.64 0.21 (0.20− 0.22) 959.70 2 < 0.0001 
Slope Variance Invariance 389.59 32 0.00 0.87 0.87 0.13 (0.12− 0.14) 293.31 2 < 0.0001 
Alzheimer’sDiseaseAssessmentScale           
Baseline Model: No Invariance 97.27 30 0.00 0.98 0.98 0.06 (0.04− 0.07)    
Intercept and Slope Mean Invariance 1083.66 34 0.00 0.66 0.67 0.21 (0.20− 0.22) 986.39 4 < 0.0001 
Intercept Mean Invariance 852.32 32 0.00 0.73 0.75 0.19 (0.18− 0.20) 755.05 2 < 0.0001 
Slope Mean Invariance 131.24 32 0.00 0.97 0.97 0.07 (0.06− 0.08) 33.97 2 < 0.0001 
Partial Slope Invariance: (AD = MCI) 109.02 31 0.00 0.97 0.97 0.06 (0.05− 0.07) 11.75 1 < 0.001 
Intercept Variance Invariance 492.62 32 0.00 0.85 0.86 0.14 (0.13− 0.15) 395.35 2 < 0.0001 
Slope Variance Invariance 218.73 32 0.00 0.94 0.93 0.09 (0.08− 0.10) 121.46 2 < 0.0001 
Mini Mental State Exam           
Baseline Model: No Invariance 88.58 30 0.00 0.97 0.97 0.05 (0.04− 0.07)    
Intercept and Slope Mean Invariance 1210.45 34 0.00 0.42 0.48 0.22 (0.21− 0.23) 1121.87 4 < 0.0001 
Intercept Mean Invariance 949.19 32 0.00 0.54 0.57 0.20 (0.19− 0.21) 860.61 2 < 0.0001 
Slope Mean Invariance 115.92 32 0.00 0.96 0.96 0.06 (0.05− 0.07) 27.34 2 < 0.0001 
Partial Slope Invariance: (AD = MCI) 100.21 31 0.00 0.97 0.97 0.06 (0.06− 0.07) 11.63 1 < 0.001 
Intercept Variance Invariance 448.72 32 0.00 0.79 0.81 0.14 (0.13− 0.15) 360.14 2 < 0.0001 
Slope Variance Invariance 341.13 32 0.00 0.85 0.86 0.12 (0.11− 0.13) 252.55 2 < 0.0001 
Rey Auditory Verbal Learning Test           
Baseline Model: No Invariance 65.28 30 0.00 0.99 0.99 0.04 (0.03− 0.05)    
Intercept and Slope Mean Invariance 1238.58 34 0.00 0.73 0.73 0.22 (0.21− 0.24) 1173.30 4 < 0.0001 
Intercept Mean Invariance 1086.47 32 0.00 0.77 0.78 0.22 (0.21− 0.23) 1021.19 2 < 0.0001 
Slope Mean Invariance 74.32 32 0.00 0.99 0.99 0.04 (0.03− 0.06) 9.04 2 0.01 
Partial Slope Invariance: (CN = MCI) 66.20 31 0.00 0.99 0.99 0.04 (0.03− 0.05) 0.92 1 0.34 
Intercept Variance Invariance 131.89 33 0.00 0.98 0.99 0.07 (0.05− 0.08) 65.69 2 < 0.0001 
Slope Variance Invariance 68.10 33 0.00 0.99 0.99 0.04 (0.03− 0.05) 1.90 2 0.39 
Montreal Cognitive Assessment Test for Dementia           
Baseline Model: No Invariance 62.19 32 0.00 0.98 0.98 0.05 (0.03− 0.06)    
Intercept and Slope Mean Invariance 570.42 36 0.00 0.64 0.70 0.18 (0.17− 0.20) 508.23 4 < 0.0001 
Intercept Mean Invariance 513.82 34 0.00 0.68 0.73 0.18 (0.16− 0.19) 451.63 2 < 0.0001 
Slope Mean Invariance (AD = MCI) 71.29 33 0.00 0.97 0.98 0.05 (0.04− 0.07) 9.10 1 0.00 
Intercept Variance Invariance 280.11 34 0.00 0.84 0.85 0.13 (0.11− 0.14) 217.92 2 < 0.0001 
Slope Variance Invariance (AD = MCI) 63.17 33 0.00 0.98 0.98 0.05 (0.03− 0.06) 0.98 1 0.32 
Cognition Self Report (Memory)           
Baseline Model: No Invariance 20.25 29 0.88 1.00 1.01 0.00 (0.00− 0.02)    
Intercept and Slope Mean Invariance 343.38 33 0.00 0.77 0.79 0.15 (0.13− 0.16) 323.13 4 < 0.0001 
Intercept Mean Invariance 268.17 31 0.00 0.83 0.83 0.13 (0.12− 0.15) 247.92 2 < 0.0001 
Partial Intercept Mean Invariance (AD = MCI) 20.37 30 0.91 1.00 1.01 0.00 (0.00− 0.02) 0.12 1 0.73 
Slope Mean Invariance 24.47 32 0.83 1.00 1.01 0.00 (0.00− 0.02) 4.10 2 0.13 
Intercept Variance Invariance 53.91 34 0.02 0.99 0.99 0.04 (0.02− 0.05) 29.44 2 < 0.0001 
Slope Variance Invariance: (CN = MCI) 28.02 33 0.71 1.00 1.00 0.00 (0.00− 0.03) 3.55 1 0.06 
Cognition Self Report (Language)           
Baseline Model: No Invariance 21.85 31 0.89 1.00 1.01 0.00 (0.00− 0.02)    
Intercept and Slope Mean Invariance 220.64 35 0.00 0.86 0.88 0.11 (0.10− 0.12) 198.79 4 < 0.0001 
Intercept Mean Invariance 180.87 33 0.00 0.89 0.90 0.10 (0.09− 0.12) 159.02 2 < 0.0001 
Partial Intercept Mean Invariance (AD = MCI) 22.26 32 0.90 1.00 1.01 0.00 (0.00− 0.02) 0.41 2 0.81 
Slope Mean Invariance 22.56 34 0.93 1.00 1.01 0.00 (0.00− 0.01) 0.71 2 0.70 
Intercept Variance Invariance 113.40 36 0.00 0.94 0.95 0.07 (0.05− 0.08) 90.84 2 < 0.0001 
Slope Variance Invariance 31.36 36 0.70 1.00 1.00 0.00 (0.00− 0.03) 8.80 2 0.01 
Cognition Partner Report (Memory)           
Baseline Model: No Invariance 46.95 31 0.03 0.99 0.99 0.03 (0.01− 0.05)    
Intercept and Slope Mean Invariance 868.51 35 0.00 0.54 0.61 0.23 (0.22− 0.25) 821.56 4 < 0.0001 
Intercept Mean Invariance 839.37 33 0.00 0.56 0.60 0.23 (0.22− 0.25) 792.42 2 < 0.0001 
Slope Mean Invariance 62.64 33 0.00 0.98 0.98 0.05 (0.03− 0.06) 15.69 2 < 0.001 
Partial Slope Mean Invariance (AD = MCI) 46.97 32 0.04 0.99 0.99 0.03 (0.01− 0.05) 0.02 1 0.89 
Intercept Variance Invariance 277.82 34 0.00 0.87 0.88 0.13 (0.13− 0.14) 230.85 2 < 0.0001 
Slope Variance Invariance: (CN = MCI) 58.12 33 0.00 0.99 0.99 0.04 (0.02− 0.06) 11.15 1 < 0.001 
Cognition Partner Report (Language)           
Baseline Model: No Invariance 52.19 30 0.01 0.99 0.99 0.04 (0.02− 0.06)    

(continued on next page) 
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investigated. Finally, when full invariance did not hold a partial 
invariance was performed. 

To avoid bias due to attrition in the sample, all the models were esti
mated using direct maximum likelihood procedure available in Mplus 
V8.3 (Muthén and Muthén, 2002, 2011). The direct maximum likelihood 
also known as Full Information Maximum Likelihood utilized all available 
information during the estimation process and provided consistent and 
efficient population parameters (Enders, 2010). The adequacy of model fit 
was evaluated using the comparative fit index (CFI; Bentler, 1990), the 
Tucker-Lewis index (TLI; Tucker and Lewis, 1973), for which values of 
0.95 or greater were considered adequate (Yu and Muthén, 2002; Hu and 

Bentler, 1999; Marsh et al., 2004). The root mean squared error of 
approximation (RMSEA) and its 90 % CI (Browne and Cudeck, 1993), for 
which values of 0.05 or less indicating adequate model fit, were also 
considered. Nested χ2 methods were used to evaluate equality across 
groups imposed on the parameters of the latent trajectories. 

3. Results 

3.1. Bivariate analysis 

Strong and positive correlation both within and across waves of 

Table 2 (continued )  

χ2 df p-value CFI TLI RMSEA (90 % CI, RMSEA) Δχ2 df P difference 

Intercept and Slope Mean Invariance 588.48 34 0.00 0.65 0.69 0.19 (0.18− 0.21) 536.29 4 < 0.0001 
Intercept Mean Invariance 524.70 32 0.00 0.69 0.71 0.19 (0.17− 0.20) 472.51 2 < 0.0001 
Slope Mean Invariance 62.58 32 0.00 0.98 0.98 0.05 (0.03− 0.06) 10.39 2 0.01 
Partial Slope Mean Invariance (AD = MCI) 53.71 31 0.01 0.99 0.99 0.04 (0.02− 0.06) 1.52 1 0.22 
Intercept Variance Invariance 496.26 33 0.00 0.71 0.74 0.18 (0.16− 0.19) 442.55 2 < 0.0001 
Slope Variance Invariance 92.54 33 0.00 0.96 0.97 0.06 (0.05− 0.08) 38.83 2 < 0.0001 
Hippocampus           
Baseline Model: No Invariance 103.04 29 0.00 0.99 0.99 0.07 (0.05− 0.08)    
Intercept and Slope Mean Invariance 503.01 33 0.00 0.95 0.96 0.16 (0.15− 0.17) 399.97 4 < 0.0001 
Intercept Mean Invariance 477.19 31 0.00 0.96 0.96 0.16 (0.15− 0.17) 374.15 2 < 0.0001 
Slope Mean Invariance 251.55 30 0.00 0.97 0.97 0.12 (0.10− 0.13) 148.51 2 < 0.0001 
Partial Slope Mean Invariance (AD = MCI) 109.37 31 0.00 0.99 0.99 0.07 (0.05− 0.08) 6.33 2 0.04 
Intercept Variance Invariance 133.95 31 0.00 0.99 0.99 0.08 (0.06− 0.09) 30.91 2 < 0.0001 
Slope Variance Invariance 114.95 31 0.00 0.99 0.99 0.07 (0.06− 0.08) 11.91 2 0.00 
Entorhinal cortex           
Baseline Model: No Invariance 42.91 30 0.00 1.00 1.00 0.03 (0.00− 0.05)    
Intercept Mean Invariance 402.24 34 0.00 0.92 0.93 0.14 (0.13− 0.16) 359.33 4 < 0.0001 
Partial Intercept Mean Invariance 359.42 32 0.00 0.93 0.93 0.14 (0.13− 0.15) 316.51 2 < 0.0001 
Slope Mean Invariance 49.08 32 0.03 1.00 1.00 0.03 (0.01− 0.05) 6.17 2 0.04 
Intercept Variance Invariance 73.73 34 0.00 0.99 0.99 0.05 (0.03− 0.06) 30.82 4 < 0.0001 
Slope Variance Invariance 54.79 34 0.01 0.99 0.99 0.03 (0.02− 0.05) 11.88 4 0.02 
Fusiform           
Baseline Model: No Invariance 65.12 30 0.00 1.00 1.00 0.05 (0.03− 0.06)    
Intercept and Slope Mean Invariance 256.37 34 0.00 0.97 0.98 0.11 (0.10− 0.12) 191.25 4 < 0.0001 
Intercept Mean Invariance 221.15 32 0.00 0.98 0.98 0.11 (0.09− 0.12) 156.03 2 < 0.0001 
Partial Intercept Mean Invariance (CN = MCI) 74.58 31 0.00 0.99 0.99 0.05 (0.04− 0.07) 9.46 1 0.00 
Slope Mean Invariance 86.62 32 0.00 0.99 0.99 0.06 (0.04− 0.07) 21.50 2 < 0.0001 
Intercept Variance Invariance 77.39 32 0.00 0.99 0.99 0.05 (0.04− 0.07) 12.27 2 0.00 
Slope Variance Invariance 89.86 32 0.00 0.99 0.99 0.06 (0.04− 0.07) 24.74 2 < 0.0001  

Table 3 
Multi-group Analysis Results using the No invariance: Baseline Model. This figure provides a comparison among groups for all studied variales.   

InterceptMean SlopeMean Intercept Variance Slope Variance 

Fluorodeoxyglucose No Invariance : CN > MCI >
AD 

No Invariance : | AD| > |MCI| >
|CN| 

No Invariance : AD > MCI 
> CN 

No Invariance : AD > MCI > CN 
ns 

Clinical Dementia Rating Scale- Sum of Boxes No Invariance : AD > MCI >
CN 

No Invariance : AD > MCI > CN No Invariance : AD > MCI 
> CN 

No Invariance : AD > MCI > CN 

Alzheimer’sDiseaseAssessmentScale No Invariance : AD > MCI >
CN 

No Invariance : AD > MCI > CN No Invariance : AD > MCI 
> CN 

No Invariance : AD > MCI > CN 

Mini Mental State Exam No Invariance : CN > MCI >
AD 

No Invariance : | AD| > |MCI| >
|CN| ns 

No Invariance : AD > MCI 
> CN 

No Invariance: AD > MCI > CN 
ns 

Rey Auditory Verbal Learning Test No Invariance : CN > MCI >
AD 

Partial Invariance: |AD| > |CN| 
= |MCI| 

No Invariance : MCI > CN 
> AD 

Invariance : AD ns = CN ns =
MCI ns 

Montreal Cognitive Assessment Test for 
Dementia 

No Invariance : CN > MCI >
AD 

No Invariance : AD > MCI > CN 
ns 

No Invariance : AD > MCI 
> CN 

Partial Invariance : AD = MCI 
and CN@0 

Cognition Self Report (Memory) Partial Invariance: AD = MCI 
> CN 

Invariance : AD ns = CN ns =
MCI ns 

No Invariance : MCI > AD 
> CN 

No Invariance 
MCI > CN ns and AD@0 

Cognition Self Report (Language) Partial Invariance: AD = MCI 
> CN 

Invariance : AD ns = CN ns =
MCI ns 

No Invariance : AD > MCI 
> CN 

Partial Invariance : AD > MCI ns 
= CN ns 

Cognition Partner Report (Memory) No Invariance : AD > MCI >
CN 

Partial Invariance: |AD| = |MCI| 
> CN ns 

No Invariance : MCI > AD 
> CN 

No Invariance : MCI > CN and 
AD@0 

Cognition Partner Report (Language) No Invariance : AD > MCI >
CN 

Partial Invariance: |AD| = |MCI| 
> CN ns 

No Invariance MCI > AD 
> CN 

No Invariance : MCI > AD > CN 
ns 

Hippocampus No Invariance : CN > MCI >
AD 

No Invariance : |MCI| > |AD| >
|CN| 

No Invariance : MCI > AD 
> CN 

No Invariance : AD > MCI > CN 

Entorhinal cortex No Invariance : CN > MCI >
AD 

No Invariance : |MCI| > |CN| >
|AD| ns 

No Invariance : MCI > AD 
> CN 

No Invariance : MCI > AD > CN 

Fusiform No Invariance : CN > MCI >
AD 

No Invariance : |AD| > |MCI| >
|CN| 

No Invariance : MCI > AD 
> CN 

No Invariance : AD > MCI > CN 
ns 

Note. |.|= absoute value, AD = Alzheimer’s disease, CN = cognitively normal, MCI = mild cognitive impairment. 
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measurement was seen for the clinical and neural measures across 
groups of patients. These results showed that patients with high clinical 
and neural measure scores at Time 1 tended to have high scores at the 
subsequent waves across groups. Means, standard deviations, zero-order 
correlations, and sample sizes for the clinical and neural measures are 
provided in Tables A1–A3 of the appendix. 

3.2. Latent curve model and multiple-group analysis 

As shown in Table 1, for each group, a linear functional form of 
growth was found to fit the observed data quite well. The CFI ranged 
from 0.92 to 1.00, the TLI from 0.92 to 1.01, the RMSEA from 0.00 to 
0.09. Parameter estimates and asymptotic standard errors of the latent 
curve models are provided in the appendix accompanying this manu
script. The multiple-group analysis results are presented in Table 2. We 
will now discuss individual results in the following paragraphs by 
groups of clinical and neural measures. Parameter estimates and 
asymptotic standard errors of latent curve models of the clinical and 
neural measures are provided in Tables A4–A16 of the appendix. Table 3 
provides a summary of the multi-group results. 

3.3. PET neuroimaging marker 

The results showed that, on average, the three groups of CN, MCI, 
and AD started with positive and significant levels of Fluorodeox
yglucose (with an intercept factor mean: AD = 1.08, CN = 1.31, MCI =
1.24) but their score of Fluorodeoxyglucose decreased slightly over time 
(with a slope factor mean: AD = -0.02, CN = -0.01, MCI = -0.02). 
Variance component in both the intercept (AD = 0.03, CN = 0.01, MCI =
0.02) and the slope (AD = 0.02, CN = 0.01 ns, MCI = 0.01) factors was 
significant, suggesting that there were meaningful group differences in 
both initial levels and growth in Fluorodeoxyglucose scores over time 
for patients with AD and MCI group. Meaningful individual variability 
for the intercept, but not for the slope, was found for the CN group. Non- 
significant correlation coefficients between the intercept and slope fac
tors (r = 0.01) were found for the three groups. The latent curve models 
estimated for the three groups of patients are shown in Fig. 1. Finally, 
the multiple-group analysis revealed that the CN group had higher 
initial levels of Fluorodeoxyglucose, followed by MCI group and by 
patients with AD. Patients with AD decreased more on their score of 
Fluorodeoxyglucose over time, followed by MCI and by the CN group. 
Patients with AD had more variability in both intercept and slope, fol
lowed by MCI and then the CN group. 

3.4. Psychological tests 

3.4.1. Clinical dementia rating scale- sum of boxes 
The intercept mean was significant and positive across groups (AD =

5.08, CN = 0.10, MCI = 1.95). A significant positive mean for the slope 
factor (AD = 0.32, CN = 0.02, MCI = 0.09) indicated that, overall, the 
three groups of patients increased in their Clinical Dementia Rating scores 
over time. Group differences in both initial levels and growth in Clinical 
Dementia Rating scores over time were significant across groups for the 
intercept (AD = 4.63, CN = 0.01, MCI = 3.89) and for the slope (AD =
0.69, CN = 0.02, MCI = 0.29). A significant negative correlation between 
the intercept and slope factors (AD = -0.72, CN = -0.02, MCI = -0.65) 
indicated that there was an inverse relationship between initial status and 
change over time (i.e., patients who reported lower levels Clinical De
mentia Rating scores at Time 1 tended to report steeper increases in score 
over time). Finally, a higher initial level of Clinical Dementia Rating scores 
with steeper slope and more variability in both intercept and slope was 
seen for patients with AD, followed by MCI and by then the CN group. 

3.4.2. Alzheimer’s disease assessment scale 
The intercept mean was significant and positive across groups (AD =

21.59, CN = 6.81, MCI = 11.41). A positive and significant mean slope 
factor was seen for patients with AD and MCI but negative for the CN 
group (AD = 0.85, CN = -0.13, MCI = 0.15), indicating increasing average 
trajectories in Alzheimer’s Disease Assessment scores over time for pa
tients with AD and MCI, but decreasing trajectories for the CN group. A 
significant variance component in both the intercept (AD = 64.75, CN =
6.25, MCI = 35.01) and the slope factors (AD = 7.54, CN = 0.20, MCI =
1.58) indicated that there were significant group differences in both initial 
levels and growth over time in Alzheimer’s Disease Assessment scores 
across groups. Patients with lower levels of Alzheimer’s Disease Assess
ment scores at Time 1 had a steeper increase over time across groups (AD 
= -8.53, CN = -0.33, MCI = -2.41). The multiple-group results were 
similar to those found for the Clinical Dementia Rating Scale. A higher 
initial level of Alzheimer’s Disease Assessment scores with steeper slope 
and more variability in both intercept and slope were seen for patients 
with AD, followed by MCI and then the CN group. 

Mini-Mental State Exam. The intercept mean was significant and posi
tive across groups (AD = 22.32, CN = 28.98, MCI = 26.91). A significant 
negative mean for the average slope factor was seen for patients with AD 
and MCI but a non-significative mean slope factor for the CN group (AD =
-0.46, CN = 0.00 ns, MCI =-0.10) indicated decreasing trajectories in Mini- 
Mental State Exam scores over time for patients with AD and MCI, but 
constant trajectories for the CN group. A significant variance component in 
both the intercept and the slope factors indicated that there were significant 
group differences in both initial levels and growth over time in Mini-Mental 
State Exam scores for patients with AD and MCI for the intercept (AD =
8.82, CN = 0.56, MCI = 6.61) and for the slope (AD = 2.17, CN = 0.01, MCI 
= 0.50). Meaningful variability of the intercept, but not of the slope, was 
found in the CN group. Patients with AD and the MCI group with lower 
levels of Mini-Mental State Exam scores at Time 1 had a steeper increase 
over time (AD = -1.85, MCI = -0.65). However, a non-significant correlation 
coefficient between the intercept and slope factors (r = -0.02 ns) was found 
for the CN group. The CN group showed higher initial levels of Mini-Mental 
State Exam scores at Time 1, followed by MCI and then patients with AD. 
Patients with AD decreased more over time, followed by the MCI group. In 
contrast, the CN group tended to have a constant trajectory over time. Pa
tients with AD had more variability in both intercept and slope, followed by 
MCI and then CN group. Patients with AD had more variability in both 
intercept and slope, followed by MCI group. 

3.4.3. Montreal cognitive assessment test for dementia 
The intercept mean was significant and positive across groups (AD =

14.99, CN = 26.04, MCI = 22.49). Increasing mean trajectory over time 
was found for patients with AD (M = 0.71) and MCI group (M = 0.24), 
but a nonsignificant mean trajectory for the CN group (M = 0.01). 

Fig. 1. PET Neuroimaging Marker Variable. The x axis represents time points of 
testing at 0, 6, 12, 24, and 36 months. AD = alzheimer’s disease, CN =
cognitively normal, MCI = mild cognitive impairment. The multiple-group 
analysis revealed that the CN group had higher initial levels of Fluorodeox
yglucose, followed by MCI group and by patients with AD. Patients with AD 
decreased more on their score of Fluorodeoxyglucose over time, followed by 
MCI and by the CN group. Patients with AD had more variability in both 
intercept and slope, followed by MCI and then the CN group. 
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Intercept variance component was significant across groups (AD =
28.20, CN = 3.69, MCI = 17.10), whereas the slope variance component 
for the CN group was slightly negative and thus fixed at zero (AD = 0.83, 
CN = @0, MCI = 0.44). Patients with AD and MCI group, with lower 
levels of Montreal Cognitive Assessment Test for Dementia scores at 
Time 1, had a steeper increase over time (AD = -2.73, MCI = -1.76). 
Because the slope variance for CN group was fixed at zero, no growth 
trajectory correlation was estimated for this group. The CN group 
showed higher initial levels of Montreal Cognitive Assessment Test for 
Dementia scores at Time 1, followed by MCI and by the AD group. Pa
tients with AD showed a steeper increase in the Montreal Cognitive 
Assessment Test for Dementia scores over time, followed by MCI and CN 
who have a similar rate of decline over time. Similarly, patients with AD 
had more variability in the intercept factor, followed by MCI and by the 
CN group. A comparable amount of variability was seen in the slope for 
groups AD and MCI. The latent curve models estimated for the three 
groups of patients for the four psychological tests are shown in Fig. 2. 

3.4.4. Rey auditory verbal learning test 
Significant and positive intercept mean was seen across groups (AD =

21.49, CN = 45.05, MCI = 33.03). A decreasing mean trajectory in Rey 
Auditory Verbal Learning Test scores over time was seen across groups (AD 
= -0.62, CN = -0.19, MCI = -0.22). Furthermore, a significant variance 

intercept component but a non significant slope variance component and a 
non significant growth factor correlation were found for the three groups 
(AD = 44.70, CN = 83.17, MCI = 116.78; for the intercept AD =1.10 ns, CN 
= 0.98 ns, MCI =1.01 ns; for the slope AD = -1.49 ns, CN = -2.22 ns, MCI =
-1.47 ns for correlation). The CN group showed higher initial levels of Rey 
Auditory Verbal Learning Test scores at Time 1, followed by MCI and by 
patients with AD. Patients with AD showed a steeper decline over time, 
followed by MCI and CN, who have a similar rate of decline over time. 
Similarly, the MCI group had more variability in the intercept factor, fol
lowed by the CN group and by patients with AD. No slope variability was 
significant across groups. Fig. 3 displays the latent curve models for the 
three groups of patients on the Rey Auditory Verbal Learning Test. 

3.4.5. Multi-domain neuropsychological and functional assessment 
Cognition Self Report (Memory). Significant and positive intercept 

mean in Cognition Self Report Memory scores were found across groups 
(AD = 2.28, CN = 1.67, MCI = 2.25). On average, the Cognition Self 
Report Memory trajectories were constant across groups over time (AD 
=0.03 ns, CN = -0.01 ns, MCI = -0.01 ns).The results also showed sig
nificant group differences in initial levels in Cognition Self Report Memory 
scores across groups (AD = 0.25, CN = 0.21, MCI = 0.41). Significant 
group differences in growth over time as well as significant negative factor 
correlation were found for MCI group only (AD = @0, CN = 0.00 ns, MCI 

Fig. 2. Psychological Test Variables. The x axis 
represents time points of testing at 0, 6, 12, 24, 
and 36 months. (a) The intercept mean was 
significant and positive across groups. A sig
nificant positive mean for the slope indicated 
that, overall, the three groups increased in their 
Clinical Dementia Rating scores over time. 
Group differences in both initial levels and 
growth in Clinical Dementia Rating scores over 
time were significant across groups for the 
intercept and for the slope. (b) The intercept 
mean was significant and positive across 
groups. A positive and significant mean slope 
factor was seen for patients with AD and MCI 
but negative for the CN group, indicating 
increasing average trajectories in Alzheimer’s 
Disease Assessment scores over time for pa
tients with AD and MCI, but decreasing trajec
tories for the CN group. (c) The intercept mean 
was significant and positive across groups. A 
significant negative mean for the average slope 
factor was seen for patients with AD and MCI 
but a non-significative mean slope factor for the 
CN group indicated decreasing trajectories in 
Mini-Mental State Exam scores over time for 
patients with AD and MCI, but constant trajec
tories for the CN group. A significant variance 
component in both the intercept and the slope 
factors indicated that there were significant 
group differences in both initial levels and 
growth over time in Mini-Mental State Exam 
scores for patients with AD and MCI for the 
intercept and for the slope. (d) The intercept 
mean was significant and positive across 
groups. Increasing mean trajectory over time 
was found for patients with AD and MCI group, 
but a nonsignificant mean trajectory for the CN 
group. Intercept variance component was sig
nificant across groups, whereas the slope vari
ance component for the CN group was slightly 
negative and thus fixed at zero. Patients with 
AD and MCI group, with lower levels of Mon
treal Cognitive Assessment Test for Dementia 
scores at Time 1, had a steeper increase over 
time.   
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= 0.01 for slope; AD = @0, CN = -0.01 ns, MCI = -0.02 ns for correlation). 
The slope variance for AD patients was fixed at zero because of small 
negative variance. The multiple-group analysis results showed that pa
tients with AD had higher but comparable initial levels of Montreal 
Cognitive Assessment Test for Dementia scores with MCI at Time 1, fol
lowed by the CN group. In contrast, the MCI group had more variability in 
the intercept factor, followed by patients with AD and by the CN group. 
Higher differences in growth over time were seen in MCI. 

3.4.6. Cognition self report (language) 
Significant and positive intercept means in Cognition Self Report 

Language scores were found across groups (AD = 1.44, CN = 1.02, MCI 
= 1.86). On average, the Cognition Self Report Language trajectories 
were constant over time across groups (AD =0.02 ns, CN = 0.01 ns, MCI 
= 0.01 ns).Differences in initial levels in Cognition Self Report Language 
scores were significant across groups (AD = 0.56, CN = 0.13, MCI =
0.29). However, differences in growth on Cognition Self Report Lan
guage over time, as well as factor correlation (negative),were significant 

for AD patients only (AD : = 0.03, CN = 0.01 ns, MCI = 0.01 for slope; 
AD : = -0.08, CN = 0.00 ns, MCI = -0.01 ns for correlation). Finally, 
patients with AD showed higher, but comparable, initial levels of 
Cognition Self Report Language scores with MCI at Time 1, followed by 
the CN group. Non-significant and comparable average slope means 
were found across groups. Yet, patients with AD had more variability in 
the intercept factor, followed by MCI and then by the CN group. Higher 
differences in growth over time were seen for AD patients, followed by 
MCI and CN groups, with both non-significant. 

3.4.7. Cognition partner report (memory) 
Intercept means in Cognition Partner Report (Memory) scores were 

positive and significant across groups (AD = 3.40, CN = 1.36, MCI = 2.34). 
Decreasing mean trajectories over time were seen for patients with AD and 
the MCI group but the non-significant mean trajectory for the CN group (AD 
= -0.04, CN = -0.01 ns, MCI = -0.04). Moreover, significant differences in 
initial levels in Cognition Partner Report (Memory) scores were found across 
groups (AD = 0.30, CN = 0.14, MCI = 0.77). Significant differences in 
growth over time were seen for MCI and CN groups (AD = @0, CN = 0.02, 
MCI = 0.03). MCI group with lower levels of Cognition Partner Report 
(Memory) scores at Time 1 had a steeper increase over time. Lastly, patients 
with AD showed higher initial levels of Cognition Partner Report (Memory) 
scores at Time 1, followed by the MCI group. Patients with AD decreased 
more over time, followed by the MCI group. Similarly, the MCI group had 
more variability in initial levels and growth over time for Cognition Partner 
Report (Memory) scores, followed by the CN group (with the exception that 
the slope variance of AD was fixed to zero). 

3.4.8. Cognition partner report (language) 
Intercept means in Cognition Partner Report (Language) scores were 

significant and positive across groups (AD = 2.70, CN = 1.17, MCI = 1.83). 
The mean trajectory was decreasing over time for AD and MCI group, but 
there was a non-significant mean trajectory for the CN group (AD = -0.05, 
CN = 0.01 ns, MCI = -0.03). Furthermore, differences in initial levels of 
Cognition Partner Report (Language) scores were significant across groups 
(AD = 0.63, CN = 0.05, MCI = 0.68). However, differences in growth over 
time were significant for AD and MCI group (AD = 0.02, CN = 0.01 ns, MCI 
= 0.03). MCI group with lower levels of Cognition Partner Report (Lan
guage) scores at Time 1 showed a steeper increase over time. Similar to the 

Fig. 4. Multi-domain Neuropsychological and 
Functional Assessment Variables. The x axis 
represents time points of testing at 0, 6, 12, 24, 
and 36 months. The Cognition Self Report 
Memory trajectories were constant across 
groups over time. The results also showed sig
nificant group differences in initial levels in 
Cognition Self Report Memory scores across 
groups. Significant group differences in growth 
over time as well as significant negative factor 
correlation were found for MCI group only.   

Fig. 3. Verbal Learning Test Variable. The x axis represents time points of 
testing at 0, 6, 12, 24, and 36 months. Significant and positive intercept mean 
was seen across groups. A decreasing mean trajectory in Rey Auditory Verbal 
Learning Test scores over time was seen across groups. Furthermore, a signif
icant variance intercept component but a non significant slope variance 
component and a non significant growth factor correlation were found for the 
three groups. 
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results for the Cognition Partner Report (Memory), patients with AD showed 
higher initial levels of Cognition Partner Report (Language) scores at Time 
1, followed by MCI and then by the CN group. Patients with AD decreased 
more over time, followed by MCI and then by CN. Finally, the MCI group 
had more variability in initial levels and growth over time in cognition 
Partner Report (Language) scores, followed by patients with AD and by the 
CN group. The latent curve models estimated for the three groups of patients 
for the four Multi-domain Neuropsychological and Functional Assessment 
measures are shown in Fig. 4. 

3.5. Neuroimaging 

3.5.1. Hippocampus 
Intercept means in Hippocampus volume measures were positive and 

significant across groups (AD = 5667.60, CN = 7338.06, MCI = 6655.96). 
And the trajectories means decreased over time across groups (AD = -38.13, 
CN = -21.60, MCI = -40.64). Furthermore, differences in initial levels and 
growth over time in Hippocampus volume measure were significant across 
groups for the intercept (AD = 1165237.20, CN = 856372.20, MCI =
1365323.13) and slope (AD = 17781.52, CN = 7890.51, MCI = 11365.01). 
AD patients with lower levels of Hippocampus volume measure at Time 1 
had a steeper increase over time. The CN group showed higher initial levels 
of Hippocampus volume measure at Time 1, followed by MCI and by pa
tients with AD. The MCI group decreased more over time, followed by pa
tients with AD and by the CN group. The MCI group had more variability in 
hippocampus volume measures at Time 1, followed by patients with AD and 
by the CN group. Finally, patients with AD had more variability in growth 
over time for Hippocampus volume measure, followed by MCI and then by 
the CN group. 

3.5.2. Entorhinal cortex 
Intercept means in Entorhinal cortex measures were significant and 

positive across groups (AD = 2765.06, CN = 3804.46, MCI = 3458.69). 
Trajectories means of Entorhinal cortex measure decreased over time for 
the CN (M = -15.15) and MCI (M = -34.52) patients but was constant for 
patients with AD (M = -21.73 ns). Moreover, differences in initial levels 
in Entorhinal cortex measure were significant across groups (AD =

378724.60, CN = 331352.03, MCI = 530292.30). However, differences 
in growth over time in Entorhinal cortex measure were significant for 
MCI group but non-significant for AD patients and CN group (AD 
=2839.92 ns, CN = 203.33 ns, MCI = 3862.41). Non-significant growth 
factor correlation coefficient was found across groups (AD =7242.86 ns, 
CN = 1003.20 ns, MCI =637.21 ns). Similar to the results with Hippo
campus volume measure to some extent, CN group showed higher initial 
levels of Entorhinal cortex measure at Time 1, followed by MCI and by 
patients with AD. The MCI group decreased more over time, followed by 
the CN group and by patients with AD (non-significant variability for AD 
patients). Lastly, the MCI group had more variability in initial levels and 
growth over time, followed by patients with AD and by the CN group. 

3.5.3. Fusiform 
The results showed significant and positive intercepts means in Fusiform 

measure across groups of patients (AD = 15271.58, CN = 17832.74, MCI =
17385.25). The results also showed decreasing mean trajectories over time 
across groups (AD = -114.99, CN = -26.11, MCI = -108.57). In addition, 
significant differences in initial levels in Fusiform measure were seen across 
groups (AD = 6458500, CN = 5440045.30, MCI = 7339949.20). Yet, sig
nificant differences in growth over time in Fusiform measure were seen for 
AD and MCI group, but the constant mean trajectory for the CN group (AD =
102973.60, CN = 13024.40 ns, MCI = 47627.70). The growth factor cor
relation coefficient was non-significant across groups (AD = -23106.40 ns, 
CN = 10525.70 ns, MCI =40563.60 ns). Similarly, the CN group showed 
higher initial levels of Fusiform measure at Time 1, followed by MCI and by 
patients with AD. Patients with AD decreased more over time, followed by 
MCI and then by the CN group. The MCI group had more variability in 
Fusiform measure at Time 1, followed by patients with AD and by the CN 
group. Finally, patients with AD had more variability in growth over time in 
Fusiform measure, followed by MCI and by the CN group. The latent curve 
models estimated for the three groups of patients for the three Neuro
imaging measures are shown in Fig. 5. 

3.6. Summary 

In summary, the three groups of patients showed, on average, 

Fig. 5. Neuroimaging Variables. The x axis 
represents time points of testing at 0, 6, 12, 24, 
and 36 months. (a) Intercept means in Hippo
campus volume measures were positive and 
significant across groups. And the trajectories 
means decreased over time across groups. 
Furthermore, differences in initial levels and 
growth over time in Hippocampus volume 
measure were significant across groups for the 
intercept and slope. (b) Intercept means in En
torhinal cortex measures were significant and 
positive across groups. Trajectories means of 
Entorhinal cortex measure decreased over time 
for the CN and MCI groups but was constant for 
patients with AD. Moreover, differences in 
initial levels in Entorhinal cortex measure were 
significant across groups. (c) The results showed 
significant and positive intercepts means in 
Fusiform measure across groups of patients. The 
results also showed decreasing mean trajec
tories over time across groups. In addition, 
significant differences in initial levels in Fusi
form measure were seen across groups. Yet, 
significant differences in growth over time in 
Fusiform measure were seen for AD and MCI 
group, but the constant mean trajectory for CN 
group. The growth factor correlation coefficient 
was non-significant across groups.   
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positive and significant differences in initial levels on all the clinical and 
neural measures. 

3.6.1. Decreasing mean trajectory 
The results showed a slight decrease, on average, in Fluorodeoxyglucose 

over time across groups with significant differences in growth for patients 
with AD and MCI. The CN group tended to have the same growth trajec
tories over time. The CN group had higher initial values of Fluorodeox
yglucose, followed by the MCI and AD groups. Patients with AD decreased 
more than the MCI group, followed by CN. Patients with AD had more 
variability in both intercept and slope, followed by the MCI and CN groups. 

Similarly, the average trajectory of Mini-Mental State Exam scores 
was decreasing over time with significant differences in growth for pa
tients with AD and the MCI group. But constant trajectory with the same 
growth trajectories was seen for the CN group. Those patients with AD 
and the MCI group who had lower levels of Mini-Mental State Exam 
scores at Time 1 tended to increase steeply over time. Higher initial level 
of Alzheimer’s Disease Assessment score with steeper slope and more 
individual differences in both intercept and slope were seen for patients 
with AD, followed by the MCI and CN groups. 

The average trajectory in Rey Auditory Verbal Learning Test scores 
was decreasing over time across groups. The same growth trajectories 
were seen within each group of patients. The CN group had higher levels 
of Rey Auditory Verbal Learning Test scores at Time 1, followed by MCI 
and by patients with AD. Patients with AD declined faster over time, 
followed by MCI and CN, who were comparable in their rate of decline. 
More differences at initial levels were seen for MCI, followed by CN and 
by patients with AD. No slope variability was significant across groups. 

The average trajectories of Cognition Partner Report in Memory and 
Language were decreasing over time with significant differences in growth 
for patients with AD and MCI. In contrast, a constant average trajectory 
was seen for the CN group. The MCI with CN groups had meaningful 
differences in growth over time in Cognition Partner Report (Memory) 
scores, whereas patients with AD and the MCI group had meaningful 
differences in growth over time in Cognition Partner Report (Language) 
scores. MCI group with lower levels of Cognition Partner Report at Time 1 
showed a steeper increase in Cognition Partner Report in both Memory 
and Language scores over time. Patients with AD had higher initial levels 
of Cognition Partner Report both in Memory and Language scores at Time 
1, followed by MCI. Patients with AD decreased more over time on both 
Memory and Language scores, followed by the MCI group. The MCI group 
had more variability in initial levels and growth over time on both 
Memory and Language scores, followed by the CN group on Memory 
scores but by patients with AD on Language scores. 

As for neuroimaging measures, the average trajectory decreased over 
time across groups for Hippocampus and Fusiform measures. The average 
trajectory in Entorhinal cortex decreased over time for CN and MCI groups 
but was constant for patients with AD. Differences in growth over time 
were seen across groups for Hippocampus volume measure, but only for 
MCI group in Ethorhinal measure, and only for AD and MCI group for 
Fusiform measures. Alzheimer’s Disease patients with lower initial levels 
of Hippocampus volume measure had a steeper increase over time. The 
CN group had higher initial levels of neuroimaging measures (Hippo
campus, Entorhinal Cortex & Fusiform) at Time 1, followed by the MCI 
group. The MCI group decreased more over time in Hippocampus and 
Entorhinal cortex measures. But patients with AD decreased more over 
time on Fusiform measures. Finally, patients with AD had more differ
ences in growth over time for Hippocampus and Fusiform measures, fol
lowed by MCI. But the MCI group had more differences in growth over 
time in Entorhinal cortex measures, followed by patients with AD. 

3.6.2. Increasing mean trajectory 
The three groups of patients increased, on average, in their Clinical 

Dementia Rating scores over time with significant differences in growth 
for the three groups of patients. Patients with lower levels of Clinical 
Dementia Rating scores at Time 1 tended to report steeper increases in 

Clinical Dementia Rating scores over time. A higher initial level of 
Clinical Dementia Rating scores with steeper slope and more variability 
in both intercept and slope was seen for patients with AD, followed by 
the MCI and CN groups. 

Increasing average trajectories in Alzheimer’s Disease Assessment scores 
over time with significant variability was seen for patients with AD and MCI, 
but decreasing trajectories for the CN group. Patients with lower levels of 
Alzheimer’s Disease Assessment scores at Time 1 had a steeper increase over 
time across groups. A higher initial level of Alzheimer’s Disease Assessment 
scores with steeper slope and more variability in both intercept and slope 
was seen for patients with AD, followed by the MCI and CN groups. 

In the same manner, the average trajectories of Montreal Cognitive 
Assessment Test for Dementia scores increased over time for AD and MCI 
group, but a non-significant mean trajectory was seen for the CN group. 
The results showed meaningful variability in growth over time in the 
Montreal Cognitive Assessment Test for Dementia scores for patients with 
AD and the MCI group. People with lower levels of Montreal Cognitive 
Assessment Test for Dementia scores at Time 1 among the AD MCI groups 
increased steeply over time. Patients with AD exhibited more variability in 
both intercept and slope, followed by MCI and by the CN group. 

3.6.3. Constant mean trajectory 
The constant average trajectory in Cognition Self Report Memory 

scores over time was seen across groups. Only the MCI group had sig
nificant differences in growth over time. Higher and compared initial 
levels of Montreal Cognitive Assessment Test for Dementia scores were 
found for patients with AD and the CN group. More differences in initial 
levels of Montreal Cognitive Assessment Test for Dementia scores were 
seen for MCI group, followed by patients with AD. 

Similarly, the average trajectory in Cognition Self Report Language 
scores was constant across groups. However, patients with AD had sig
nificant differences in growth over time, while the other two groups (MCI 
and CN) of patients grew the same way within each group. AD patients 
with lower levels of Cognition Self Report Language score at Time 1 had 
steeper increases over time. Higher and compared initial levels of 
Cognition Self Report Language scores were found for patients with AD 
and the MCI group. Patients with AD had more differences in initial levels 
of Cognition Self Report Language score and growth over time. 

4. Discussion 

The study aimed to identify the trajectories of CN, MCI, and AD 
groups on neuropsychological assessments and neurological biomarkers 
associated with dementia. In addition, we examined whether the tra
jectories of cognitive decline differed between CN MCI, and AD groups. 
The results showed that there were generally strong correlations in the 
clinical and neural measures with respect to different time points. While 
a correlation is not sufficient to infer a causal relationship, the high 
scores in measures at time 1 could help us expect that the subsequent 
scores will be also high. All correlation values were larger than 0.85. 

To find the most adequate model of growth of both clinical and 
neural measures, we used the Latent Curve Model (LCM). To the best of 
our knowledge, this is the first study to use LCM on a large longitudinal 
dataset that include controls, MCI, and AD patients. The results showed 
that among several forms of growth, including linear, quadratic, and 
freeloading models, the linear functional form of growth was optimal for 
the three groups and for all clinical and neural measures as shown in 
Table 1. The main indices of the goodness-of-fit such as CFI, TLI, and 
RMSEA were significantly in the range of optimal fit. In line with other 
research (e.g., Anstey et al., 2003; Garre-Olmo et al., 2010; Haaksma 
et al., 2018; Johnson et al., 2012; MacAulay et al., 2018; McArdle et al., 
2005), we have shown that LCM can be used to identify and differentiate 
between groups with different cognitive decline trajectories. However, 
where previous research has typically identified different classes of AD 
(e.g., Haaksma et al., 2018), we here have shown that this method can 
also be applied to three different classes for CN, MCI, and AD groups. 
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The LCM was also used to examine the developmental trajectory of 
several neuropsychological assessments and AD biomarkers. The tra
jectories of these measures are distinguishable in all models. From the 
different graphs, there were generally no two trajectories that inter
sected at any time. Therefore, measurements can generally be differ
entiating between CN, MCI, and AD. We can also notice that the slope of 
the AD patients is relatively steeper than the slope of CN and MCI. These 
findings confirm previous research which suggested the longitudinal 
trajectory of cognitive decline might be different across normal age- 
related decline, MCI, and AD (Johnson et al., 2012; Mungas et al., 
2010). Our research findings confirm Johnson et al., (2010) results by 
showing that latent curve modeling can be used to differentiate between 
groups with MCI and normal age-related decline. However, we have 
extended these findings by showing that LCM can be used to also 
differentiate the trajectory of cognitive decline associated with AD. That 
is, the trajectories and steepness of cognitive decline in neurocognitive 
measure scores can be used to differentiate between CN (i.e., normal 
age-related cognitive decline), MCI, and AD groups. 

In terms of intercept and slope variances. The AD and MCI groups 
show higher variance values. This suggests that differentiating between 
MCI and AD groups could be difficult for some measurements. For 
example, in the Cognition Self Report (Language) the values of mean lines 
of AD and MCI are close. Therefore, based on scores on the Cognition Self 
Report (Language) it would be difficult to differentiate between groups 
presenting with AD and MCI. Instead, we suggest depending on more 
spread out or distinguishable lines as such Cognition Partner report 
(Language). These results showed that there is a significant difference in 
the trajectories for some of these measures between the three groups. 
Hippocampus and Fusiform measures decreased significantly for groups 
with AD compared to CN and MCI, supporting previous research that 
hippocampal volume is a reliable predictor of AD (e.g., Dowling et al., 
2015; Perrin et al., 2009; Shaw et al., 2009). Further, our results show that 
the longitudinal progression of hippocampal and fusiform volume can be 
used to differentiate between CN, MCI, and AD groups (Fagan et al., 2007; 
Hansson et al., 2006; Li, 2007; Perrin et al., 2009). 

While AD patients showed lower baseline levels of Hippocampus 
volume measure, over time they presented with a more rapid and steeper 
increase. On average, all three groups showed an increase in their Clinical 
Dementia Rating scale, Alzheimer’s disease Cognitive Assessment scale, 
and Montreal Assessment Test for Dementia scale. The increase in Mon
treal Assessment Test for Dementia scale over time in all three groups is 
counterintuitive, as it expected that as people get older, their cognitive 
performance deteriorates. It is possible that these results are due to having 
a small number of participants at follow-up tests (around 60 participants 
and even fewer at later testing times). In contrast to these variables, there 
was a decrease in other neuropsychological and neurological biomarkers 
(i.e., Fluorodeoxyglucose, Mini-Mental State Exam scores, Rey Auditory 
Verbal Learning Test scores, Cognition Partner Report in Memory and 
Language, Hippocampal volume, Fusiform and Entorhinal cortex mea
sures). This suggests that cognitive decline occurs within all three groups, 
emphasizing the difficulty to differentiate between these three groups of 
patients. We confirm that indicators of cognitive decline differed signifi
cantly between healthy controls, mild cognitive impairment, and AD, as 
found by measures of tau pathology, neuroinflammation, and brain at
rophy (Malpetti et al., 2019). However, a novel finding of our study was 
that all three groups produced different trajectories across the clinical and 
neural measures. Accordingly, while all three groups show a decline in 
cognitive performance, the trajectory of the decline is often worse for 
those with MCI and AD, compared to CN groups. 

5. Conclusion 

Our study has shown that LCM can be used to reliably distinguish CN, 
MCI, and AD groups. Further, we have identified that the longitudinal 
trajectory and steepness of cognitive decline within these three groups 
differ significantly on multiple neuropsychological assessment and 

biomarkers. While the measures can classify people within the correct 
class, not all measures were able to clearly distinguish between the MCI 
and AD groups. This further emphasizes the complexity and difficulty to 
identify AD during the early stages. Our study has identified that LCM 
can be used to identify the longitudinal trajectory of patients with 
different levels of cognitive impairment (i.e., CN, MCI, and AD). Indeed, 
our findings showed that LCM can provide a more accurate prognosis by 
observing the trajectories, slopes, and variance of cognitive decline to 
differentiate if a person is experiencing cognitively normal age-related 
decline, MCI, or AD. Considering the neurodegenerative nature of AD 
(Alzheimer Association, 2019), clinicians need to identify the possible 
trajectory of cognitive decline of their patients to provide early inter
vention. Using LCM can provide clinicians with a tool to better identify 
the trajectory of cognitive decline for patients presenting with cognitive 
impairment. LCM shows promising results and should be considered as a 
method for classifying and differentiating between healthy, MCI, and AD 
groups by assessing the trajectories, slopes, and variance of multiple 
neuropsychological assessment and biomarkers. 
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Table A1 
Means, Standard Deviations, Sample Size and Zero Order Correlation of the Dependent Variables for the AD patients.   

1 2 3 4 5 

Fluorodeoxyglucose 
1. FDG 1 1     
2. FDG 2 0.90** 1    
3. FDG 3 0.87** 0.91** 1   
4. FDG 4 0.83** 0.88** 0.87** 1  
5. FDG 5 0.71** 0.84** 0.89** 0.78** 1       

Mean 1.08 1.03 1.02 1.03 1.04 
SD 0.15 0.13 0.14 0.15 0.18 
n 127 103 91 81 46 
Clinical Dementia Rating Scale- Sum of Boxes 
1. CDRSB 1 1     
2. CDRSB 2 0.61** 1    
3. CDRSB 3 0.48** 0.65** 1   
4. CDRSB 4 0.30** 0.54** 0.55** 1  
5. CDRSB 5 0.24** 0.29** 0.61** 0.79** 1       

Mean 4.91 5.54 5.77 5.89 6.61 
SD 2.46 2.54 2.81 2.84 3.69 
n 298 270 215 154 97 
Alzheimer’sDiseaseAssessmentScale 
1. ADAS11 1 1     
2. ADAS11 2 0.77** 1    
3. ADAS113 0.62** 0.72** 1   
4. ADAS11 4 0.47** 0.54** 0.69** 1  
5. ADAS11 5 0.35** 0.45** 0.79** 0.92** 1 
Mean 21.29 22.20 22.64 23.35 25.79 
SD 8.38 8.44 9.67 9.83 10.27 
n 292 268 216 153 97 
Mini Mental State Exam 
1. MMSE 1 1     
2. MMSE 2 0.53** 1    
3. MMSE 3 0.39** 0.61** 1   
4. MMSE 4 0.11 0.41** 0.62** 1  
5. MMSE 5 0.24** 0.34** 0.77** 0.84** 1 
Mean 22.50 21.73 21.22 20.98 20.44 
SD 3.06 4.19 4.69 4.76 4.99 
n 292 270 217 154 98 
Rey Auditory Verbal Learning Test      
1. RAVIMD 1 1     
2. RAVIMD 2 0.69** 1    
3. RAVIMD 3 0.67** 0.70** 1   
4. RAVIMD 4 0.67** 0.66** 0.72** 1  
5. RAVIMD 5 0.52** 0.63** 0.64** 0.76** 1 
Mean 22.01 19.62 21.02 19.55 19.46 
SD 7.85 7.84 8.21 7.76 8.45 
n 288 265 210 150 92 
Montreal Cognitive Assessment Test for Dementia      
1. MOCA 1 1     
2. MOCA 2 0.83** 1    
3. MOCA 3 0.78** 0.92** 1   
4. MOCA 4 0.66** 0.84** 0.85** 1  
5. MOCA 5 0.32** 0.64** 0.65** 0.89** 1 
Mean 15.65 15.77 17.11 17.11 15.89 
SD 5.41 5.28 5.45 4.50 4.61 
n 97 81 57 66 44 
Cognition Self Report (Memory)      
1. ECPTMM 1 1     
2. ECPTMM 2 0.60** 1    
3. ECPTMM 3 0.46* 0.45* 1   
4. ECPTMM 4 0.53** 0.47* 0.87** 1  
5. ECPTMM 5 0.29* 0.39* 0.39* 0.36* 1 
Mean 2.29 2.29 2.17 2.42 2.41 
SD 0.77 0.72 0.71 0.72 0.66 
n 96 82 56 70 43 
Cognition Self Report (Language)      
1. ECPTLG 1 1     
2. ECPTLG 2 0.91** 1    
3. ECPTLG 3 0.65** 0.75** 1   
4. ECPTLG 4 0.53** 0.57** 0.59** 1  
5. ECPTLG 5 0.18 0.53** 0.47* 0.45* 1       

Mean 1.81 1.75 1.76 1.92 1.90 
SD 0.74 0.70 0.73 0.74 0.72 
n 94 81 55 70 43 

*p < 0.05; ** p < 0.01. 
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Table A2 
Means, Standard Deviations, Sample Size and Zero Order Correlation of the 
Dependent Variables for the CN group.   

1 2 3 4 5 

Fluorodeoxyglucose 
1. FDG 1 1     
2. FDG 2 0.79** 1    
3. FDG 3 0.85** 0.87** 1   
4. FDG 4 0.76** 0.79** 0.87** 1  
5. FDG 5 0.81** 0.86** 0.86** 0.91** 1 
Mean 1.30 1.29 1.27 1.27 1.28 
SD 0.12 0.11 0.12 0.12 0.12 
n 205 149 131 105 95 
Clinical Dementia Rating Scale- Sum of Boxes 
1. CDRSB 1 1     
2. CDRSB 2 0.41** 1    
3. CDRSB 3 0.21* 0.53** 1   
4. CDRSB 4 0.12* 0.49** 0.67** 1  
5. CDRSB 5 0.10 0.13* 0.41** 0.57** 1 
Mean 0.10 0.15 0.14 0.17 0.20 
SD 0.43 0.45 0.37 0.54 0.60 
n 763 402 395 353 313 
Alzheimer’sDiseaseAssessmentScale 
1. ADAS11 1 1     
2. ADAS11 2 0.54** 1    
3. ADAS113 0.51** 0.51** 1   
4. ADAS11 4 0.55** 0.55** 0.52** 1  
5. ADAS11 5 0.47** 0.48** 0.54** 0.64** 1 
Mean 6.99 5.81 5.74 5.71 5.91 
SD 3.22 3.07 3.08 3.25 3.26 
n 762 404 401 357 316 
Mini Mental State Exam 
1. MMSE 1 1     
2. MMSE 2 0.36** 1    
3. MMSE 3 0.30** 0.17 1   
4. MMSE 4 0.38** 0.50** 0.30** 1  
5. MMSE 5 0.28** 0.24** 0.31** 0.30** 1 
Mean 28.96 29.01 29.00 28.99 28.93 
SD 1.28 1.20 1.28 1.28 1.26 
n 766 405 401 357 318 
Rey Auditory 

Verbal 
Learning Test      

1. RAVIMD 1 1     
2. RAVIMD 2 0.71** 1    
3. RAVIMD 3 0.71** 0.71** 1   
4. RAVIMD 4 0.68** 0.70** 0.70** 1  
5. RAVIMD 5 0.63** 0.68** 0.67** 0.69** 1 
Mean 45.22 43.49 43.84 45.05 43.88 
SD 10.56 10.41 10.81 10.69 10.09 
n 762 401 401 355 315 
Montreal 

Cognitive 
Assessment 
Test for 
Dementia      

1. MOCA 1 1     
2. MOCA 2 0.50** 1    
3. MOCA 3 0.53** 0.58** 1   
4. MOCA 4 0.59** 0.57** 0.64** 1  
5. MOCA 5 0.61** 0.52** 0.71** 0.51** 1       

Mean 26.10 25.91 25.66 26.16 25.84 
SD 2.57 2.70 2.56 2.38 2.70 
n 527 183 190 201 171 
Cognition Self 

Report 
(Memory)      

1. ECPTMM 1 1     
2. ECPTMM 2 0.67** 1    
3. ECPTMM 3 0.64** 0.62** 1   
4. ECPTMM 4 0.68** 0.67** 0.71** 1  
5. ECPTMM 5 0.55** 0.57** 0.64** 0.64** 1  

Table A2 (continued )  

1 2 3 4 5       

Mean 1.68 1.80 1.69 1.70 1.72 
SD 0.54 0.60 0.54 0.56 0.58 
n 541 185 190 206 173 
Cognition Self 

Report 
(Language)      

1. ECPTLG 1 1     
2. ECPTLG 2 0.64** 1    
3. ECPTLG 3 0.53** 0.57** 1   
4. ECPTLG 4 0.67** 0.69** 0.70** 1  
5. ECPTLG 5 0.60** 0.64** 0.64** 0.70** 1 
Mean 1.45 1.52 1.49 1.45 1.49 
SD 0.48 0.49 0.48 0.44 0.46 
n 539 185 190 206 173 
Cognition 

Partner 
Report 
(Memory)      

1. ECSPM 1 1     
2. ECSPM 2 0.65** 1    
3. ECSPM 3 0.61** 0.71** 1   
4. ECSPM 4 0.47** 0.65** 0.58** 1  
5. ECSPM 5 0.47** 0.61** 0.51** 0.64** 1 
Mean 1.36 1.43 1.41 1.39 1.45 
Standard 

deviation 
0.47 0.47 0.51 0.49 0.54 

n 522 181 186 199 169 
Cognition 

Partner 
Report 
(Language)      

1. ECSPLG 1 1     
2. ECSPLG 2 0.50** 1    
3. ECSPLG 3 0.52** 0.64** 1   
4. ECSPLG 4 0.23** 0.48** 0.48** 1  
5. ECSPLG 5 0.46** 0.61** 0.61** 0.45** 1 
Mean 1.17 1.18 1.19 1.17 1.19 
SD 0.33 0.30 0.30 0.32 0.34 
n 522 181 185 200 170 
Hippocampus      
1. HIPC 1 1     
2. HIPC 2 0.96** 1    
3. HIPC 3 0.94** 0.96** 1   
4. HIPC 4 0.93** 0.94** 0.96 1  
5. HIPC 5 0.91** 0.94** 0.96** 0.97** 1 
Mean 7278.04 7285.86 7289.11 7245.74 7227.75 
SD 944.33 955.37 900.77 945.82 994.46 
n 392 352 345 319 243 
Entorhinal 

cortex      
1. ENTORC 1 1     
2. ENTORC 2 0.81** 1    
3. ENTORC 3 0.81** 0.80** 1   
4. ENTORC 4 0.84** 0.81** 0.79** 1  
5. ENTORC 5 0.80** 0.84** 0.83** 0.83** 1 
Mean 3812.67 3767.56 3820.53 3751.22 3718.20 
SD 667.59 630.18 657.80 630.25 646.17 
n 366 333 329 303 245 
Fusiform      
1. FUSIF1 1     
2. FUSIF 2 0.95** 1    
3. FUSIF 3 0.95** 0.96** 1   
4. FUSIF 4 0.94** 0.94** 0.95** 1  
5. FUSIF 5 0.93** 0.93** 0.95** 0.94** 1 
Mean 17654.25 17630.35 17587.13 17764.19 17594.06 
SD 2502.56 2431.90 2392.85 2350.87 2482.07 
n 366 333 329 303 245 

*p < 0.05; ** p < 0.01. 
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Table A3 
Means, Standard Deviations, Sample Size and Zero Order Correlation of the 
Dependent Variables for the MCI group.   

1 2 3 4 5 

Fluorodeoxyglucose 
1. FDG 1 1     
2. FDG 2 0.92** 1    
3. FDG 3 0.87** 0.90** 1   
4. FDG 4 0.90** 0.90** 0.91** 1  
5. FDG 5 0.87** 0.86** 0.88** 0.93** 1 
Mean 1.24 1.19 1.19 1.19 0.18 
SD 0.13 0.13 0.14 0.15 0.15 
n 403 222 242 206 202 
Clinical Dementia Rating Scale- Sum of Boxes 
1. CDRSB 1 1     
2. CDRSB 2 0.75** 1    
3. CDRSB 3 0.61** 0.78** 1   
4. CDRSB 4 0.40** 0.60** 0.70** 1  
5. CDRSB 5 0.25** 0.46** 0.58** 0.68** 1       

Mean 1.97 2.19 2.12 2.29 2.45 
SD 2.18 1.99 1.83 2.02 2.06 
n 909 670 705 615 569 
Alzheimer’sDiseaseAssessmentScale 
1. ADAS11 1 1     
2. ADAS11 2 0.73** 1    
3. ADAS113 0.69** 0.74** 1   
4. ADAS11 4 0.61** 0.66 0.73** 1  
5. ADAS11 5 0.49** 0.60** 0.68** 0.70** 1       

Mean 11.40 12.08 11.37 12.06 12.39 
SD 6.75 6.68 6.32 7.76 7.34 
n 896 663 706 622 570 
Mini Mental State Exam 
1. MMSE 1 1     
2. MMSE 2 0.64** 1    
3. MMSE 3 0.50** 0.65** 1   
4. MMSE 4 0.43** 0.60** 0.67** 1  
5. MMSE 5 0.31** 0.56** 0.55** 0.69** 1       

Mean 26.93 26.50 26.69 26.59 26.23 
SD 3.13 3.12 2.98 3.39 3.58 
n 900 665 707 622 571 
Rey Auditory 

Verbal 
Learning Test      

1. RAVIMD 1 1     
2. RAVIMD 2 0.82** 1    
3. RAVIMD 3 0.81** 0.82** 1   
4. RAVIMD 4 0.78** 0.82** 0.81** 1  
5. RAVIMD 5 0.77** 0.80** 0.83** 0.85** 1 
Mean 33.36 30.83 32.29 32.15 31.01 
SD 11.76 11.67 11.49 12.37 11.88 
n 895 663 705 614 561 
Montreal 

Cognitive 
Assessment 
Test for 
Dementia      

1. MOCA 1 1     
2. MOCA 2 0.81** 1    
3. MOCA 3 0.74** 0.78** 1   
4. MOCA 4 0.69** 0.74** 0.74 1  
5. MOCA 5 0.60** 0.70** 0.71** 0.75** 1 
Mean 22.76 22.33 23.42 23.68 22.82 
SD 4.52 4.31 3.48 3.72 3.75 
n 485 273 339 281 282 
Cognition Self 

Report 
(Memory)      

1. ECPTMM 1 1     
2. ECPTMM 2 0.68** 1    
3. ECPTMM 3 0.70** 0.71** 1   
4. ECPTMM 4 0.58** 0.66** 0.69** 1  
5. ECPTMM 5 0.61** 0.63** 0.70** 0.72** 1 
Mean 2.26 2.28 2.26 2.18 2.30 
SD 0.75 0.75 0.74 0.71 0.72  

Table A3 (continued )  

1 2 3 4 5 

n 495 280 343 283 284 
Cognition Self 

Report 
(Language)      

1. ECPTLG 1 1     
2. ECPTLG 2 0.65** 1    
3. ECPTLG 3 0.66** 0.73** 1   
4. ECPTLG 4 0.59 0.65** 0.68** 1  
5. ECPTLG 5 0.63** 0.69** 0.70** 0.69** 1 
Mean 1.87 1.87 1.85 1.84 1.89 
SD 0.67 0.68 0.65 0.65 0.66 
n 492 279 342 280 285 
Rey Auditory 

Verbal 
Learning Test      

1. RAVIMD 1 1     
2. RAVIMD 2 0.82** 1    
3. RAVIMD 3 0.81** 0.82** 1   
4. RAVIMD 4 0.78** 0.82** 0.81** 1  
5. RAVIMD 5 0.77** 0.80** 0.83** 0.85** 1 
Mean 33.36 30.83 32.29 32.15 31.01 
SD 11.76 11.67 11.49 12.37 11.88 
n 895 663 705 614 561 
Montreal 

Cognitive 
Assessment 
Test for 
Dementia      

1. MOCA 1 1     
2. MOCA 2 0.81** 1    
3. MOCA 3 0.74** 0.78** 1   
4. MOCA 4 0.69** 0.74** 0.74 1  
5. MOCA 5 0.60** 0.70** 0.71** 0.75** 1 
Mean 22.76 22.33 23.42 23.68 22.82 
SD 4.52 4.31 3.48 3.72 3.75 
n 485 273 339 281 282 
Cognition Self 

Report 
(Memory)      

1. ECPTMM 1 1     
2. ECPTMM 2 0.68** 1    
3. ECPTMM 3 0.70** 0.71** 1   
4. ECPTMM 4 0.58** 0.66** 0.69** 1  
5. ECPTMM 5 0.61** 0.63** 0.70** 0.72** 1 
Mean 2.26 2.28 2.26 2.18 2.30 
SD 0.75 0.75 0.74 0.71 0.72 
n 495 280 343 283 284 
Cognition Self 

Report 
(Language)      

1. ECPTLG 1 1     
2. ECPTLG 2 0.65** 1    
3. ECPTLG 3 0.66** 0.73** 1   
4. ECPTLG 4 0.59 0.65** 0.68** 1  
5. ECPTLG 5 0.63** 0.69** 0.70** 0.69** 1 
Mean 1.87 1.87 1.85 1.84 1.89 
SD 0.67 0.68 0.65 0.65 0.66 
n 492 279 342 280 285 
Cognition 

Partner 
Report 
(Memory)      

1. ECSPM 1 1     
2. ECSPM 2 0.86** 1    
3. ECSPM 3 0.79** 0.84** 1   
4. ECSPM 4 0.73** 0.76** 0.80** 1  
5. ECSPM 5 0.71** 0.71** 0.77** 0.80** 1 
Mean 2.34 2.42 2.21 2.20 2.27 
Standard 

deviation 
0.94 0.96 0.91 0.88 0.89 

n 494 283 344 275 280 
Cognition 

Partner 
Report 
(Language)      

1. ECSPLG 1 1     

(continued on next page) 
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Table A4 
Parameter Estimates and Asymptotic Standard Errors of Latent Curve Model for 
Fluorodeoxyglucose Variablefor AD, CN, and MCI groups.  

AD Group  CN Group  

Parameter Estimate SE Parameter Estimate SE 

Variances   Variances   
ψα  0.03*** 0.00 ψα  0.01*** 0.00 
ψβ  0.02* 0.00 ψβ  0.01 0.01 
Covariance   Covariance   
ψαβ  0.01 0.01 ψαβ  0.01 0.01 
Means   Means   
Intercept μα  1.08*** 0.01 Intercept μα  1.31*** 0.01 
Linear Slope μβ  − 0.03*** 0.00 Linear Slope μβ  − 0.01*** 0.00 
Residual variances   Residual variances 
Var(ε1)  0.02* 0.01 Var(ε1)  0.03** 0.00 
Var(ε2)  0.02* 0.01 Var(ε2)  0.02** 0.00 
Var(ε3)  0.02* 0.01 Var(ε3)  0.02** 0.00 
Var(ε4)  0.03* 0.01 Var(ε4)  0.02** 0.00 
Var(ε5)  0.02 0.03 Var(ε5)  0.02 0.01  

MCI group  

Parameter Estimate SE 

Variances   
ψα  0.02*** 0.00 
ψβ  0.01** 0.00  

Table A3 (continued )  

1 2 3 4 5 

2. ECSPLG 2 0.83** 1    
3. ECSPLG 3 0.76** 0.79** 1   
4. ECSPLG 4 0.74** 0.77** 0.79** 1  
5. ECSPLG 5 0.60** 0.71** 0.70** 0.78** 1 
Mean 1.82 1.95 1.75 1.75 1.77 
SD 0.83 0.92 0.76 0.78 0.74 
n 496 283 343 275 281 
Hippocampus      
1. HIPC 1 1     
2. HIPC 2 0.98** 1    
3. HIPC 3 0.97** 0.98** 1   
4. HIPC 4 0.96** 0.97** 0.93** 1  
5. HIPC 5 0.92** 0.93** 0.95** 0.97** 1 
Mean 6664.01 6578.21 6565.86 6528.40 6500.56 
SD 1144.29 1187.08 1262.11 1227.95 1239.22 
n 606 605 578 447 431 
Entorhinal 

cortex      
1. ENTORC 1 1     
2. ENTORC 2 0.87** 1    
3. ENTORC 3 0.85** 0.86** 1   
4. ENTORC 4 0.85** 0.88** 0.88** 1  
5. ENTORC 5 0.83** 0.85** 0.85** 0.89** 1 
Mean 3449.21 3390.38 3383.53 3365.32 3339.33 
SD 771.79 802.95 821.22 790.43 811.13 
n 592 577 532 432 420 
Fusiform      
1. FUSIF1 1     
2. FUSIF 2 0.96** 1    
3. FUSIF 3 0.96** 0.97** 1   
4. FUSIF 4 0.94** 0.96** 0.96** 1  
5. FUSIF 5 0.93** 0.93** 0.95** 0.96** 1 
Mean 17190.63 17081.81 17046.37 16952.98 17094.35 
SD 2726.22 2748.42 2816.96 2818.56 2885.17 
n 592 577 532 432 420 

*p < 0.05; ** p < 0.01. 

Table A4 (continued ) 

MCI group  

Parameter Estimate SE 

Covariance   
ψαβ  0.01 0.01 
Means   
Intercept μα  1.24*** 0.01 
Linear Slope μβ  − 0.02*** 0.00 
Residual variances   
Var(ε1)  0.01** 0.00 
Var(ε2)  0.02*** 0.00 
Var(ε3)  0.02*** 0.00 
Var(ε4)  0.02** 0.00 
Var(ε5)  0.02** 0.00 

Note. μα = intercept mean, μβ = linear slope mean, ψα = intercept variance, ψβ =

linear slope variance, ψαβ = intercept and slope covariance, Var(εi) =residual 
variance at time point i. 
*p < 0.05; ** p < 0.01; *** p < 0.001. 

Table A5 
Parameter Estimates and Asymptotic Standard Errors of Latent Curve Model for 
Clinical Dementia Rating Scale- Sum of BoxesVariablefor AD CN and MCI 
groups.  

AD group  CN group  

Parameter Estimate SE Parameter Estimate SE 

Variances   Variances   
ψα  4.63*** 0.54 ψα  0.10*** 0.01 
ψβ  0.69** 0.12 ψβ  0.02*** 0.00 
Covariance   Covariance   
ψαβ  − 0.72*** 0.21 ψαβ  − 0.02*** 0.00 
Means   Means   
Intercept μα  5.08*** 0.14 Intercept μα  0.10*** 0.02 
Linear Slope μβ  0.32*** 0.06 Linear Slope μβ  0.02* 0.01 
Residual variances   Residual variances 
Var(ε1)  1.79** 0.40 Var(ε1)  0.09*** 0.01 
Var(ε2)  2.32*** 0.30 Var(ε2)  0.10*** 0.01 
Var(ε3)  2.76*** 0.38 Var(ε3)  0.06*** 0.01 
Var(ε4)  2.58*** 0.946 Var(ε4)  0.09*** 0.01 
Var(ε5)  3.31** 0.67 Var(ε5)  0.18*** 0.02  

MCI group  

Parameter Estimate SE 

Variances   
ψα  3.89*** 0.01 
ψβ  0.29*** 0.00 
Covariance   
ψαβ  − 0.65*** 0.06 
Means   
Intercept μα  1.95*** 0.07 
Linear Slope μβ  0.09*** 0.02 
Residual variances   
Var(ε1)  1.35*** 0.11 
Var(ε2)  0.56*** 0.06 
Var(ε3)  0.76*** 0.06 
Var(ε4)  1.37*** 0.11 
Var(ε5)  1.09*** 0.14 

Note. μα = intercept mean, μβ = linear slope mean, ψα = intercept variance, ψβ =

linear slope variance, ψαβ = intercept and slope covariance, Var(εi) =residual 
variance at time point i. 
*p < 0.05; ** p < 0.01; *** p < 0.001. 
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Table A6 
Parameter Estimates and Asymptotic Standard Errors of Latent Curve Model for 
Alzheimer’s Disease Assessment ScaleVariablefor AD CN and MCI groups.  

AD group  CN group  

Parameter Estimate SE Parameter Estimate SE 

Variances   Variances   
ψα  64.75*** 6.22 ψα  6.25*** 0.58 
ψβ  7.54*** 1.04 ψβ  0.20** 0.07 
Covariance   Covariance   
ψαβ  − 8.53*** 1.93 ψαβ  − 0.33* 0.17 
Means   Means   
Intercept μα  21.59*** 0.47 Intercept μα  6.81*** 0.11 
Linear Slope μβ  0.85*** 0.19 Linear Slope μβ  − 0.13** 0.04 
Residual variances   Residual variances 
Var(ε1)  9.12** 3.39 Var(ε1)  4.03*** 0.47 
Var(ε2)  20.50*** 2.80 Var(ε2)  4.66*** 0.42 
Var(ε3)  22.47*** 3.23 Var(ε3)  4.83*** 0.44 
Var(ε4)  22.75*** 6.17 Var(ε4)  4.36*** 0.47 
Var(ε5)  2.46 8.22 Var(ε5)  4.38*** 0.64  

MCI group  

Parameter Estimate SE 

Variances   
ψα  35.01*** 2.06 
ψβ  1.58** 0.18 
Covariance   
ψαβ  − 2.41*** 0.47 
Means   
Intercept μα  11.41*** 0.21 
Linear Slope μβ  0.15* 0.06 
Residual variances   
Var(ε1)  11.79*** 1.08 
Var(ε2)  10.40*** 0.83 
Var(ε3)  9.20*** 0.72 
Var(ε4)  19.31*** 1.40 
Var(ε5)  12.87** 1.54 

Note. μα = intercept mean, μβ = linear slope mean, ψα = intercept variance, ψβ =

linear slope variance, ψαβ = intercept and slope covariance, Var(εi) =residual 
variance at time point i. 
*p < 0.05; ** p < 0.01; *** p < 0.001. 

Table A7 
Parameter Estimates and Asymptotic Standard Errors of Latent Curve Model for 
Mini Mental State ExamVariable for AD, CN, and MCI groups.  

AD group  CN group  

Parameter Estimate SE Parameter Estimate SE 

Variances   Variances   
ψα  8.82*** 1.24 ψα  0.56*** 0.09 
ψβ  2.17*** 0.28 ψβ  0.01 0.01 
Covariance   Covariance   
ψαβ  − 1.85*** 0.48 ψαβ  − 0.02 0.03 
Means   Means   
Intercept μα  22.32*** 0.18 Intercept μα  28.98*** 0.04 
Linear Slope μβ  − 0.46*** 0.10 Linear Slope μβ  0.00 0.02 
Residual variances   Residual variances 
Var(ε1)  1.01 0.96 Var(ε1)  1.06*** 0.10 
Var(ε2)  10.04*** 1.06 Var(ε2)  0.93*** 0.08 
Var(ε3)  8.89*** 1.10 Var(ε3)  1.18*** 0.10 
Var(ε4)  5.61*** 1.57 Var(ε4)  1.10*** 0.10 
Var(ε5)  @0.00 0 Var(ε5)  1.11*** 0.14  

MCI group  

Parameter Estimate SE 

Variances   
6.61*** 0.44  

Table A7 (continued ) 

MCI group  

Parameter Estimate SE 

ψα  

ψβ  0.50*** 0.05 
Covariance   
ψαβ  − 0.65*** 0.12 
Means   
Intercept μα  26.91*** 0.10 
Linear Slope μβ  − 0.10** 0.03 
Residual variances   
Var(ε1)  3.64*** 0.31 
Var(ε2)  2.66*** 0.22 
Var(ε3)  3.35*** 0.24 
Var(ε4)  3.53*** 0.29 
Var(ε5)  3.66*** 0.42 

Note. μα = intercept mean, μβ = linear slope mean, ψα = intercept variance, ψβ =

linear slope variance, ψαβ = intercept and slope covariance, Var(εi) =residual 
variance at time point i. 
*p < 0.05; ** p < 0.01; *** p < 0.001. 

Table A8 
Parameter Estimates and Asymptotic Standard Errors of Latent Curve Model for 
Montreal Cognitive Assessment Test for Dementia Variable for AD, CN, and MCI 
groups.  

AD group  CN group  

Parameter Estimate SE Parameter Estimate SE 

Variances   Variances   
ψα  28.20*** 4.01 ψα  3.69*** 0.32 
ψβ  0.83* 0.39 ψβ  @0.00 0.00 
Covariance   Covariance   
ψαβ  − 2.73** 0.92 ψαβ  @0.00 0.00 
Means   Means   
Intercept μα  14.99*** 0.47 Intercept μα  26.04*** 0.11 
Linear Slope μβ  0.71*** 0.14 Linear Slope μβ  0.01 0.04 
Residual variances   Residual variances 
Var(ε1)  6.77** 2.40 Var(ε1)  3.00*** 0.30 
Var(ε2)  2.17 1.19 Var(ε2)  3.45*** 0.45 
Var(ε3)  4.49** 1.31 Var(ε3)  2.40*** 0.35 
Var(ε4)  2.83 1.68 Var(ε4)  2.39*** 0.34 
Var(ε5)  4.00 2.52 Var(ε5)  2.90*** 0.42  

MCI group  

Parameter Estimate SE 

Variances   
ψα  17.10*** 1.29 
ψβ  0.44*** 0.08 
Covariance   
ψαβ  − 1.76*** 0.25 
Means   
Intercept μα  22.49*** 0.19 
Linear Slope μβ  0.24*** 0.05 
Residual variances   
Var(ε1)  4.79*** 0.59 
Var(ε2)  2.67*** 0.42 
Var(ε3)  3.30*** 0.37 
Var(ε4)  3.84*** 0.49 
Var(ε5)  2.60*** 0.58 

Note. μα = intercept mean, μβ = linear slope mean, ψα = intercept variance, ψβ =

linear slope variance, ψαβ = intercept and slope covariance, Var(εi) =residual 
variance at time point i. 
*p < 0.05; ** p < 0.01; *** p < 0.001. 
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Table A9 
: Parameter Estimates and Asymptotic Standard Errors of Latent Curve Model for 
Rey Auditory Verbal Learning Test Variable for AD, CN, and MCI groups.  

AD group  CN group  

Parameter Estimate SE Parameter Estimate SE 

Variances   Variances   
ψα  44.70*** 5.13 ψα  83.17*** 5.91 
ψβ  1.10 0.80 ψβ  0.98 0.46 
Covariance   Covariance   
ψαβ  − 1.49 1.43 ψαβ  − 2.22 1.33 
Means   Means   
Intercept μα  21.49*** 0.43 Intercept μα  45.05*** 0.37 
Linear Slope μβ  − 0.62*** 0.14 Linear Slope μβ  − 0.19* 0.10 
Residual variances   Residual variances 
Var(ε1)  18.58*** 3.48 Var(ε1)  29.87*** 3.62 
Var(ε2)  20.89*** 2.63 Var(ε2)  33.04*** 3.19 
Var(ε3)  20.41*** 2.76 Var(ε3)  35.31*** 3.27 
Var(ε4)  15.73*** 3.92 Var(ε4)  36.79*** 3.70 
Var(ε5)  21.90** 7.44 Var(ε5)  32.46*** 4.62  

MCI group  

Parameter Estimate SE 

Variances   
ψα  116.78*** 6.27 
ψβ  1.01 0.79 
Covariance   
ψαβ  − 1.47 0.99 
Means   
Intercept μα  33.03*** 0.37 
Linear Slope μβ  − 0.22** 0.08 
Residual variances   
Var(ε1)  23.40*** 2.26 
Var(ε2)  24.29*** 1.90 
Var(ε3)  25.05*** 1.78 
Var(ε4)  26.16*** 2.11 
Var(ε5)  17.82*** 2.39 

Note. μα = intercept mean, μβ = linear slope mean, ψα = intercept variance, ψβ =

linear slope variance, ψαβ = intercept and slope covariance, Var(εi) =residual 
variance at time point i. 
*p < 0.05; ** p < 0.01; *** p < 0.001. 

Table A10 
Parameter Estimates and Asymptotic Standard Errors of Latent Curve Model for 
Cognition Self Report (Memory) Variable for AD, CN, and MCI groups.  

AD group  CN group  

Parameter Estimate SE Parameter Estimate SE 

Variances   Variances   
ψα  0.25*** 0.05 ψα  0.21*** 0.02 
ψβ  @0.00 0.00 ψβ  0.00 0.00 
Covariance   Covariance   
ψαβ  @0.00 0.00 ψαβ  − 0.01 0.01 
Means   Means   
Intercept μα  2.28*** 0.06 Intercept μα  1.67*** 0.02 
Linear Slope μβ  0.03 0.02 Linear Slope μβ  − 0.01 0.01 
Residual variances   Residual variances 
Var(ε1)  0.31*** 0.07 Var(ε1)  0.08*** 0.02 
Var(ε2)  0.28*** 0.06 Var(ε2)  0.12*** 0.02 
Var(ε3)  0.27*** 0.07 Var(ε3)  0.10*** 0.02 
Var(ε4)  0.27*** 0.07 Var(ε4)  0.08*** 0.01 
Var(ε5)  0.25** 0.08 Var(ε5)  0.12*** 0.02  

MCI group  

Parameter Estimate SE 

Variances    

Table A10 (continued ) 

MCI group  

Parameter Estimate SE 

ψα  0.41*** 0.04 
ψβ  0.01** 0.00 
Covariance   
ψαβ  − 0.02* 0.01 
Means   
Intercept μα  2.25*** 0.01 
Linear Slope μβ  − 0.01 0.01 
Residual variances   
Var(ε1)  0.16*** 0.02 
Var(ε2)  0.19*** 0.02 
Var(ε3)  0.14*** 0.02 
Var(ε4)  0.17*** 0.02 
Var(ε5)  0.13*** 0.02 

Note. μα = intercept mean, μβ = linear slope mean, ψα = intercept variance, ψβ =

linear slope variance, ψαβ = intercept and slope covariance, Var(εi) =residual 
variance at time point i. 
*p < 0.05; ** p < 0.01; *** p < 0.001. 

Table A11 
Parameter Estimates and Asymptotic Standard Errors of Latent Curve Model for 
Cognition Self Report (Language) Variable for AD, CN, and MCI groups.  

AD group  CN group  

Parameter Estimate SE Parameter Estimate SE 

Variances   Variances   
ψα  0.56*** 0.07 ψα  0.13*** 0.02 
ψβ  0.03* 0.01 ψβ  0.01 0.01 
Covariance   Covariance   
ψαβ  − 0.08*** 0.02 ψαβ  0.00 0.00 
Means   Means   
Intercept μα  1.44*** 0.07 Intercept μα  1.02*** 0.01 
Linear Slope μβ  0.02 0.02 Linear Slope μβ  0.01 0.01 
Residual variances   Residual variances 
Var(ε1)  @0.00 0.00 Var(ε1)  0.09*** 0.01 
Var(ε2)  0.09*** 0.02 Var(ε2)  0.08*** 0.01 
Var(ε3)  0.22*** 0.06 Var(ε3)  0.09*** 0.01 
Var(ε4)  0.26*** 0.07 Var(ε4)  0.04*** 0.01 
Var(ε5)  0.23* 0.10 Var(ε5)  0.07*** 0.01  

MCI group  

Parameter Estimate SE 

Variances   
ψα  0.29*** 0.03 
ψβ  0.01 0.01 
Covariance   
ψαβ  − 0.01 0.01 
Means   
Intercept μα  1.86*** 0.03 
Linear Slope μβ  0.01 0.01 
Residual variances   
Var(ε1)  0.17** 0.02 
Var(ε2)  0.15*** 0.02 
Var(ε3)  0.12*** 0.01 
Var(ε4)  0.15*** 0.02 
Var(ε5)  0.13*** 0.02 

Note. μα = intercept mean, μβ = linear slope mean, ψα = intercept variance, ψβ =

linear slope variance, ψαβ = intercept and slope covariance, Var(εi) =residual 
variance at time point i. 
*p < 0.05; ** p < 0.01; *** p < 0.001. 
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Table A12 
Parameter Estimates and Asymptotic Standard Errors of Latent Curve Model for Cognition Partner Report (Memory) Variable for AD, CN, and MCI groups.  

AD group  CN group  

Parameter Estimate SE Parameter Estimate SE 

Variances   Variances   
ψα  0.30*** 0.04 ψα  0.14*** 0.01 
ψβ  @0.00 0.00 ψβ  0.02* 0.01 
Covariance   Covariance   
ψαβ  @0.00 0.00 ψαβ  − 0.01 0.01 
Means   Means   
Intercept μα  3.40*** 0.05 Intercept μα  1.36*** 0.02 
Linear Slope μβ  − 0.04* 0.02 Linear Slope μβ  0.01 0.01 
Residual variances   Residual variances 
Var(ε1)  0.10** 0.04 Var(ε1)  0.08*** 0.01 
Var(ε2)  0.29*** 0.05 Var(ε2)  0.05*** 0.01 
Var(ε3)  0.20*** 0.05 Var(ε3)  0.09*** 0.01 
Var(ε4)  0.11*** 0.03 Var(ε4)  0.09*** 0.01 
Var(ε5)  0.11** 0.04 Var(ε5)  0.10*** 0.02  

MCI group  

Parameter Estimate SE 

Variances   
ψα  0.77*** 0.05 
ψβ  0.03*** 0.01 
Covariance   
ψαβ  − 0.05*** 0.01 
Means   
Intercept μα  2.34*** 0.04 
Linear Slope μβ  − 0.04*** 0.01 
Residual variances   
Var(ε1)  0.12** 0.02 
Var(ε2)  0.13*** 0.02 
Var(ε3)  0.15*** 0.02 
Var(ε4)  0.20*** 0.02 
Var(ε5)  0.13*** 0.03 

Note. μα = intercept mean, μβ = linear slope mean, ψα = intercept variance, ψβ = linear slope variance, ψαβ = intercept and slope covariance, Var(εi) =residual variance 
at time point i. 
*p < 0.05; ** p < 0.01; *** p < 0.001. 

Table A13 
Parameter Estimates and Asymptotic Standard Errors of Latent Curve Model for Cognition Partner Report (Language) Variable for AD, CN, and MCI groups.  

AD group  CN group  

Parameter Estimate SE Parameter Estimate SE 

Variances   Variances   
ψα  0.63*** 0.10 ψα  0.05*** 0.01 
ψβ  0.02* 0.01 ψβ  0.01 0.01 
Covariance   Covariance   
ψαβ  − 0.05 0.03 ψαβ  − 0.01 0.01 
Means   Means   
Intercept μα  2.70*** 0.07 Intercept μα  1.17*** 0.01 
Linear Slope μβ  − 0.05* 0.02 Linear Slope μβ  0.01 0.01 
Residual variances   Residual variances 
Var(ε1)  0.11 0.06 Var(ε1)  0.06*** 0.01 
Var(ε2)  0.22*** 0.01 Var(ε2)  0.03*** 0.00 
Var(ε3)  0.26*** 0.01 Var(ε3)  0.03*** 0.01 
Var(ε4)  0.07 0.04 Var(ε4)  0.07*** 0.01 
Var(ε5)  0.07 0.07 Var(ε5)  0.04*** 0.01  

MCI group  

Parameter Estimate SE 

Variances   

(continued on next page) 
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Table A14 
Parameter Estimates and Asymptotic Standard Errors of Latent Curve Model for Hippocampus Variable for AD, CN, and MCI groups.  

AD group  CN group  

Parameter Estimate SE Parameter Estimate SE 

Variances   Variances   
ψα  1165237.20*** 98588.10 ψα  856372.20*** 55977.10 
ψβ  17781.52*** 3323.95 ψβ  7890.51*** 1121.60 
Covariance   Covariance   
ψαβ  − 2690.58* 1267.66 ψαβ  − 4903.40 5700.50 
Means   Means   
Intercept μα  5667.60*** 63.53 Intercept μα  7338.06*** 41.84 
Linear Slope μβ  − 38.13** 11.69 Linear Slope μβ  − 21.60*** 5.77 
Residual variances   Residual variances 
Var(ε1)  21253.70 15115.50 Var(ε1)  32454.40*** 6570.34 
Var(ε2)  58682.50*** 11503.90 Var(ε2)  34177.62*** 4614.27 
Var(ε3)  50670.90*** 11226.02 Var(ε3)  37991.08*** 4209.23 
Var(ε4)  14970.90 8076.31 Var(ε4)  31546.65*** 4702.94 
Var(ε5)  28385.70 17841.10 Var(ε5)  18653.95** 5672.78  

MCI group  

Parameter Estimate SE 

Variances   
ψα  1365323.13*** 68361.37 
ψβ  11365.01*** 1050.72 
Covariance   
ψαβ  5978.11 6113.64 
Means   
Intercept μα  6655.96*** 40.69 
Linear Slope μβ  − 40.64*** 5.10 
Residual variances   
Var(ε1)  16307.28*** 3748.96 
Var(ε2)  23523.52*** 2646.44 
Var(ε3)  29998.21*** 2787.52 
Var(ε4)  14040.65*** 2881.77 
Var(ε5)  69376.66*** 8163.48 

Note. μα = intercept mean, μβ = linear slope mean, ψα = intercept variance, ψβ = linear slope variance, ψαβ = intercept and slope covariance, Var(εi) =residual variance 
at time point i. 
*p < 0.05; ** p < 0.01; *** p < 0.001. 

Table A13 (continued ) 

MCI group  

Parameter Estimate SE 

ψα  0.68*** 0.04 
ψβ  0.03*** 0.00 
Covariance   
ψαβ  − 0.06*** 0.01 
Means   
Intercept μα  1.83*** 0.04 
Linear Slope μβ  − 0.03*** 0.01 
Residual variances   
Var(ε1)  0.09*** 0.02 
Var(ε2)  0.14*** 0.02 
Var(ε3)  0.15*** 0.02 
Var(ε4)  0.14*** 0.02 
Var(ε5)  0.09*** 0.02 

Note. μα = intercept mean, μβ = linear slope mean, ψα = intercept variance, ψβ = linear slope variance, ψαβ = intercept and slope covariance, Var(εi) =residual variance 
at time point i. 
*p < 0.05; ** p < 0.01; *** p < 0.001. 
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Table A15 
Parameter Estimates and Asymptotic Standard Errors of Latent Curve Model for the Entorhinal Cortex Variable for AD, CN and MCI groups.  

AD group  CN group  

Parameter Estimate SE Parameter Estimate SE 

Variances   Variances   
ψα  378724.60*** 40971.30 ψα  331352.03*** 26635.40 
ψβ  2839.92 3076.73 ψβ  203.33 1135.64 
Covariance   Covariance   
ψαβ  7242.86 8970.63 ψαβ  1003.20 4114.60 
Means   Means   
Intercept μα  2765.06**** 41.17 Intercept μα  3804.46*** 28.92 
Linear Slope μβ  − 21.73 11.59 Linear Slope μβ  − 15.15** 5.67 
Residual variances   Residual variances 
Var(ε1)  84698.50*** 18942.03 Var(ε1)  82078.80*** 10266.60 
Var(ε2)  116107.30*** 16314.50 Var(ε2)  72452.70*** 7973.80 
Var(ε3)  73078.80*** 12132.10 Var(ε3)  87088.70*** 9008.50 
Var(ε4)  62446.70*** 15364.90 Var(ε4)  72630.40*** 8400.01 
Var(ε5)  59275.40*** 25457.30 Var(ε5)  72022.50*** 11560.90  

MCI group  

Parameter Estimate SE 

Variances   
ψα  530292.30*** 30846.70 
ψβ  3862.41** 1112.60 
Covariance   
ψαβ  637.21 4415.90 
Means   
Intercept μα  3458.69*** 27.67 
Linear Slope μβ  − 34.52*** 5.40 
Residual variances   
Var(ε1)  78133.90*** 8840.10 
Var(ε2)  81351.80*** 6935.40 
Var(ε3)  100807.50*** 7950.60 
Var(ε4)  61267.40*** 6797.20 
Var(ε5)  82949.21*** 9859.70 

Note. μα = intercept mean, μβ = linear slope mean, ψα = intercept variance, ψβ = linear slope variance, ψαβ = intercept and slope covariance, Var(εi) =residual variance 
at time point i. 
*p < 0.05; ** p < 0.01; *** p < 0.001. 

Table A16 
: Parameter Estimates and Asymptotic Standard Errors of Latent Curve Model for FusiformVariable for AD, CN, and MCI groups.  

AD group  CN group  

Parameter Estimate SE Parameter Estimate SE 

Variances   Variances   
ψα  6,458,500*** 576908.30 ψα  5440045.30*** 364,198 
ψβ  102973.60*** 26,523 ψβ  13024.40 5767.40 
Covariance   Covariance   
ψαβ  − 23106.40 83946.90 ψαβ  10525.70 31992.20 
Means   Means   
Intercept μα  15271.58*** 156.43 Intercept μα  17832.74*** 107.88 
Linear Slope μβ  − 114.99*** 33.92 Linear Slope μβ  − 26.11* 13.17 
Residual variances   Residual variances 
Var(ε1)  288362.10** 92683.30 Var(ε1)  250250.20*** 38638.60 
Var(ε2)  288190.60*** 64,084 Var(ε2)  293825.40*** 32457.40 
Var(ε3)  220833.10*** 54698.70 Var(ε3)  229140.80*** 27712.60 
Var(ε4)  589875.30*** 135172.20 Var(ε4)  347332.50*** 40506.10 
Var(ε5)  229825.10 202,550 Var(ε5)  414321.70*** 61514.50 
MCI group      
Parameter Estimate SE    
Variances      
ψα  7339949.20*** 381783.60    
ψβ  47627.70*** 6592.20    
Covariance      
ψαβ  40563.60 36,998    

(continued on next page) 
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Appendix B. Supplementary data 

Supplementary material related to this article can be found, in the 
online version, at doi:https://doi.org/10.1016/j.jneumeth.2020.1090 
40. 
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